Tiny biohybrid robots on the micrometer scale can swim through the body and deliver drugs to tumors or provide other cargo-carrying functions. The natural environmental sensing tendencies of bacteria mean they can navigate toward certain chemicals or be remotely controlled using magnetic or sound signals.
To be successful, these tiny biological robots must consist of materials that can pass clearance through the body’s immune response. They also have to be able to swim quickly through viscous environments and penetrate tissue cells to deliver cargo.
In a paper published this week in APL Bioengineering, from AIP Publishing, researchers fabricated biohybrid bacterial microswimmers by combining a genetically engineered E. coli MG1655 substrain and nanoerythrosomes, small structures made from red blood cells.
A targeted therapy, currently being studied for treatment of certain cancers including glioblastoma, may also be beneficial in treating other neurologic diseases, a study at the University of Cincinnati shows.
The study, being published online April 6 in the journal EBioMedicine, revealed that the effects of a therapy delivery system using microscopic components of a cell (nanovesicles) called SapC-DOPS may be able to provide targeted treatment without harming healthy cells. This method could even prove to be successful in treating other neurologic conditions, like Parkinson’s disease.
This study is led by Xiaoyang Qi, professor in the Division of Hematology Oncology, UC Department of Internal Medicine, and Ying Sun, research professor in the UC Department of Pediatrics and a member of the Division of Human Genetics at Cincinnati Children’s Hospital Medical Center.
Scientists can identify pathogenic genes through genetic engineering. This involves adding human-made DNA into a bacterial cell. However, the problem is that bacteria have evolved complex defense systems to protect against foreign intruders — especially foreign DNA. Current genetic engineering approaches often disguise the human-made DNA as bacterial DNA to thwart these defenses, but the process requires highly specific modifications and is expensive and time-consuming.
In a paper published recently in the Proceedings of the National Academy of Sciences journal, Dr. Christopher Johnston and his colleagues at the Forsyth Institute describe a new technique to genetically engineer bacteria by making human-made DNA invisible to a bacterium’s defenses. In theory, the method can be applied to almost any type of bacteria.
Johnston is a researcher in the Vaccine and Infectious Disease Division at the Fred Hutchinson Cancer Research Center and lead author of the paper. He said that when a bacterial cell detects it has been penetrated by foreign DNA, it quickly destroys the trespasser. Bacteria live under constant threat of attack by a virus, so they have developed incredibly effective defenses against those threats.
Can Rejuvenation Biotech Help Boost Immune Response to Infectious Diseases? Aging of the immune system makes reduces immune response in elderly — 3 main reasons: cell loss (naive t-cells), accumulation of cells we don’t want (death resistant cells), and changes to internal constitution of the cells.
Early stage research by Janko Nikolich-Žugich indicates that the naive T-cells* produced by the thyamus may not work properly because of something going on with the lymph nodes.
Also vaccines don’t really work well in the elderly either because of other parts of the immune system not working so well.
* T-cells as part of the adaptive immune system rely for it’s function on genetic diversity.
Research involving bowhead whales has suggested that it may one day be possible to extend the human lifespan to 200 years.
From the demigods of Greek mythology to the superheroes of 20th century comic books, we’ve been intrigued by the idea of human enhancement for quite a while, but we’ve also worried about negative consequences. Both in the Greek myths and modern comics and television, each enhanced human has been flawed in some way.
In the area of lifespan enhancement, for instance, Tithonus, though granted eternal life, shrunk and shriveled into a grasshopper, because his immortal girlfriend Eos, forgot to ask Zeus to give him eternal youth. Achilles, while super strong and agile, had a weak spot at the back of his heal, and Superman would lose his power if exposed to “kryptonite”. As for Khan’s people, their physical superiority, both physical and mental, made them overly ambitious, causing a third world war that nearly destroyed humanity in the Star Trek backstory.
Using genetic modification, nanotechnology, bionics, reconstructive surgery, hormones, drugs or any combination of these approaches, real-life human enhancement is looking ever more achievable. As with the fictional examples, the idea of enhancement being a double-edged sword will surely remain part of the discussion. At the same time, though, because enhancement means mastering and manipulating human physiology and the basis of consciousness and self-awareness, the road to enhancement will be paved with advances beneficial to the sick and the disabled. This point must be at center stage when we weigh the pluses and minuses in various enhancement categories, especially physical capability, mental function, and lifespan.
The human cerebral cortex is important for cognition, and it is of interest to see how genetic variants affect its structure. Grasby et al. combined genetic data with brain magnetic resonance imaging from more than 50,000 people to generate a genome-wide analysis of how human genetic variation influences human cortical surface area and thickness. From this analysis, they identified variants associated with cortical structure, some of which affect signaling and gene expression. They observed overlap between genetic loci affecting cortical structure, brain development, and neuropsychiatric disease, and the correlation between these phenotypes is of interest for further study.
Dr. Susan White and her genetics team treated two triplets from a family who had an undiagnosed neurodegenerative disorder in 2014. After one year of age, the children’s developmental skills declined. They lost visual coordination. Feeding and swallowing food became impossible. The children developed intractable seizures.
Exactly what led to their neurodegeneration was a mystery.
“As you can imagine, that was just a horrendous experience for their family and we suspected a genetic condition because of that pattern of problems occurring in both children,” White, an associate professor at Murdoch Children’s Research Institute (MCRI) and Victorian Clinical Genetics Services (VCGS), said in an interview with Being Patient.
Given the rapid development of virtual reality technology, we may very well be moving toward a time when we’re able to manage the brain’s memories.
Could we develop a similar capability? That may depend heavily upon a handful of ambitious attempts at brain-computer interfacing. But science is moving in baby steps with other tactics in both laboratory animals and humans.
Thus far, there have been some notable achievements in rodent experiments, that haven’t done so well with humans. We don’t have a beam that can go into your mind and give you 60 years worth of new experiences. Nevertheless, the emerging picture is that the physical basis of memory is understandable to the point that we should be able to intervene — both in producing and eliminating specific memories.
At MIT’s Center for Neural Circuit Genetics, for example, scientists have modified memories in mice using an optogenetic interface. This technology involves genetic modification of tissues, in this case within the brain, to express proteins that respond to light. Triggered by implants that deliver laser beams, brain cells can be triggered to be more or less active. In research that has been published in the prestigious journal Nature, the MIT team used the approach in specific brain circuits important to memory consolidation. The researchers were able to enhance the development of negative memories — for instance a shock given to an animal’s leg — and also to convert those negative memories into positive memories. The latter was achieved by letting male mice enjoy some time with females, while nerve cells that usually deliver the negative impulses associated with the former shock were stimulated through the optogenetic interface.