Debris from an out-of-control Chinese rocket likely plunged into the Indian Ocean, just west of the Maldives, on Saturday night ET, China’s space agency said.
Most of the huge Long March 5B rocket, however, burned up on reentering the atmosphere, the China Manned Space Engineering Office said in a post on WeChat.
It was unclear if any debris had landed on the atoll nation.
How an MIT engineering course became an incubator for fusion design innovations.
“There is no lone genius who solves all the problems.”
Dennis Whyte, director of the Plasma Science and Fusion Center (PSFC), is reflecting on a guiding belief behind his nuclear science and engineering class 22.63 (Principles of Fusion Engineering). He has recently watched his students, working in teams, make their final presentations on how to use fusion technology to create carbon-free fuel for shipping vessels. Since taking on the course over a decade ago, Whyte has moved away from standard lectures, prodding the class to work collectively on finding solutions to “real-world” issues. Over the past years the course, and its collaborative approach to design, has been instrumental in guiding the real future of fusion at the PSFC.
John Martinis has done groundbreaking research on coherent superconducting devices since his PhD at the University of California, Berkeley, in 1985. These superconducting devices can be modeled as lumped-element electric circuits using Josephson junctions, capacitors and inductors as components. The fact that a superconducting phase across a Josephson junction can display coherent quantum behavior – even though it is a property of the wave function of an immense number of electrons – can be viewed as a fundamental discovery [1], kickstarting, in retrospect, the field of superconducting quantum computing.
John Martinis invented and developed the superconducting phase qubit, based on a current-biased Josephson junction, for the purpose of scalable multi-qubit quantum computing [2]. In 2002, he first demonstrated coherent Rabi oscillations and quantum measurement for such superconducting phase qubit [3]. He has had a longstanding interest in understanding the origin of noise in superconducting electric circuits as these sources of noise naturally limit qubit coherence. In particular, his understanding of noise sources such as dielectric loss, flux noise and the presence and dynamics of quasi-particles [4], by means of simple physical models, have been instrumental in the field. The effect and mitigation of quasi-particles and how they are affected by radiation and cosmic rays continues to be of high interest for the future of superconducting quantum devices [5, 6].
An important step showing his leadership and commitment to building a quantum computer came with his 2014 move, as a Professor at UCSB, to Google, where he gathered a large team of physicists and engineers to tackle the challenge of making a multi-qubit programmable processor. This team has excelled in its relentless focus on optimizing device performance by implementing successful engineering choices for qubit design, couplers and scalable I/O.
Tomographic 3D printing is a revolutionary technology that uses light to create three-dimensional objects. A projector beams light at a rotating vial containing photocurable resin, and within seconds the desired shape forms inside the vial. The light projections needed to solidify specific 3D regions of the polymer are calculated using tomographic imaging concepts.
The technology was first demonstrated by researchers at the University of California, Berkeley and Lawrence Livermore National Labs in 2019, and a Swiss group at École Polytechnique Fédérale de Lausanne (EPFL) in 2020. It is significantly faster than traditional 3D printing in layers, can print around existing objects, and does not require support structures.
Though incredible, the technology can get messy in the lab. The vial’s round shape makes it refract rays like a lens. To counter this, experts use a rectangular index-matching bath that provides a flat surface for rays to pass through correctly. The vial of resin must be dipped in and out of the bath for each use—creating a slimy situation.
Deep-tech healthcare & energy investments for a sustainable future — dr. anil achyuta, investment director / founding member, TDK ventures.
Dr. Anil Achyuta is an Investment Director and a Founding Member at TDK Ventures, which is a deep-tech corporate venture fund of TDK Corporation, the Japanese multinational electronics company that manufactures electronic materials, electronic components, and recording and data-storage media.
Anil is passionate about energy and healthcare sectors as he believes these are the most impactful areas to building a sustainable future – a mission directly in line with TDK Ventures’ goal.
At TDK Ventures, Anil has reviewed over 1050 start-ups and invested in: 1) Autoflight — an electric vertical take-off and landing company, 2) Genetesis — a magnetic imaging-based cardiac diagnostics company, 3) Origin — 3D printing mass manufacturing company, 4) Exo — hand-held 3D ultrasound imaging company, 5) GenCell — ammonia-to-energy hydrogen fuel cell company, 6) Mojo Vision – augmented reality contact lens company, and 7) Battery Resourcers – a direct to cathode lithium ion battery recycling company.
From his seven investments, Anil has secured two exits. GenCell IPO’d on Tel Aviv’s Stock Exchange, and Origin was acquired by the #1 3D Printing company in the world, Stratasys, for $100M.
Anil was voted as one of the Rising Stars in 2021 by Venture Capital Journal and recently, Anil was ranked #2 Rising Star in 2021 out 20000 corporate venturing managers globally.
Prior to TDK Ventures, Anil held leadership roles at Fortune 500 companies including L’Oréal, Johnson & Johnson, GlaxoSmithKline, and Draper.
Anil has a Ph.D. in Chemical Engineering from Northeastern University and has authored over 15 peer-reviewed journal publications and 5 US patents.
Researchers have discovered the most precise way to control individual ions using holographic optical engineering technology.
The new technology uses the first known holographic optical engineering device to control trapped ion qubits. This technology promises to help create more precise controls of qubits that will aid the development of quantum industry-specific hardware to further new quantum simulation experiments and potentially quantum error correction processes for trapped ion qubits.
“Our algorithm calculates the hologram’s profile and removes any aberrations from the light, which lets us develop a highly precise technique for programming ions,” says lead author Chung-You Shih, a Ph.D. student at the University of Waterloo’s Institute for Quantum Computing (IQC).
Novel bio-sensing technologies to reduce food waste and optimize supply chains — a US$1 trillion need — katherine sizov — founder, strella biotechnology.
An estimated 40% of all global produce is wasted due to spoilage that occurs before it ever reaches consumers’ grocery bags. And this loss, not only represents loss due to quality or ripeness standards that consumers desire, but also a significant impact on global emissions and fresh water supplies that it took to produce and transport that produce, representing a combined figure of US$1 Trillion annually.
Katherine Sizov is the Founder of Strella Biotechnology (https://www.strellabiotech.com/), a company that builds novel bio-sensing platforms that can predict the ripeness of fruit and ultimately use this information to optimize supply chains by reducing food waste and increasing produce margins.
Strella won the 2019 President’s Innovation Prize (PIP) award from University of Pennsylvania, the grand prize at the Arizona State University Innovation Open, and the Venture Award at O3 World’s 1682 conference, and is recently is coming off of a US$3.3 million seed round with some very prominent institutional investors, including Marc Cuban Companies, Yamaha Motor Ventures & Laboratory Silicon Valley, and Catapult Ventures.
Katherine studied Molecular Biology and Chemistry, as well as Engineering Entrepreneurship, at the University of Pennsylvania.
The now-familiar sight of traditional propeller wind turbines could be replaced in the future with wind farms containing more compact and efficient vertical turbines.
New research from Oxford Brookes University has found that the vertical turbine design is far more efficient than traditional turbines in large-scale wind farms, and when set in pairs the vertical turbines increase each other’s performance by up to 15%.
A research team from the School of Engineering, Computing and Mathematics (ECM) at Oxford Brookes led by Professor Iakovos Tzanakis conducted an in-depth study using more than 11500 hours of computer simulation to show that wind farms can perform more efficiently by substituting the traditional propeller-type Horizontal Axis Wind Turbines (HAWTs), for compact Vertical Axis Wind Turbines (VAWTs).
Fixing traumatic injuries to the skin and bones of the face and skull is difficult because of the many layers of different types of tissues involved, but now, researchers have repaired such defects in a rat model using bioprinting during surgery, and their work may lead to faster and better methods of healing skin and bones.
“This work is clinically significant,” said Ibrahim T. Ozbolat, Hartz Family Career Development Associate Professor of Engineering Science and Mechanics, Biomedical Engineering and Neurosurgery, Penn State. “Dealing with composite defects, fixing hard and soft tissues at once, is difficult. And for the craniofacial area, the results have to be esthetically pleasing.”
Currently, fixing a hole in the skull involving both bone and soft tissue requires using bone from another part of the patient’s body or a cadaver. The bone must be covered by soft tissue with blood flow, also harvested from somewhere else, or the bone will die. Then surgeons need to repair the soft tissue and skin.
**Space Renaissance International (SRI) Medici Fund** is happy to announce that, due to the generosity of our Education Sponsors, we are able to award a few **prizes and grants for students** of any age, interested to space settlement, exploration and civilian development. Three programmes are now open to applicants, in the frame of the **2021 Space Renaissance Congress “The Civilian Space Development”**.
The 3° SRI World Congress (SRIC3) will take place in a virtual format and will provide attendees with cutting-edge developments in Space Settlement & Exploration, Human Rights, Ethics, Policies, Engineering, Entrepreneurship, Energy, Economics and Education from leaders in their respective fields. Experts in research and industry will present the emerging technologies and future directions in their field. Students at all ages, who are interested in Space Science, Technology, Philosophy, Economy, Policy, Law, Art, are warmly encouraged to participate to the 2021 Space Renaissance Congress. Please visit this link to apply to any of the Student Sponsored Programmes: https://2021.spacerenaissance.space/index.php/students-sponsored-programs/