Technology is as Human Does When one of the U.S. Air Force’s top future strategy guys starts dorking out on how we’ve gotta at least begin considering what to do when a progressively decaying yet apocalyptically belligerent sun begins BBQing the earth, attention is payed. See, none of the proposed solutions involve marinade or species-level acquiescence, they involve practical discussion on the necessity for super awesome technology on par with a Kardeshev Type II civilization (one that’s harnessed the energy of an entire solar system).
Because Not if, but WHEN the Earth Dies, What’s Next for Us? Head over to Kurzweil AI and have a read of Lt. Col. Peter Garretson’s guest piece. There’s perpetuation of the species stuff, singularity stuff, transhumanism stuff, space stuff, Mind Children stuff, and plenty else to occupy those of us with borderline pathological tech obsessions.
I have been corresponding with John Hunt and have decided that perhaps it is time to start moving toward forming a group that can accomplish something.
The recent death of Neil Armstrong has people thinking about space. The explosion of a meteor over Britain and the curiosity rover on Mars are also in the news. But there is really nothing new under the sun. There is nothing that will hold people’s attention for very long outside of their own immediate comfort and basic needs. Money is the central idea of our civilization and everything else is soon forgotten. But this idea of money as the center of all activity is a death sentence. Human beings die and species eventually become extinct just as worlds and suns also are destroyed or burn out. Each of us is in the position of a circus freak on death row. Bizarre, self centered, doomed; a cosmic joke. Of all the creatures on this planet, we are the freaks the other creatures would come to mock- if they were like us. If they were supposedly intelligent like us. But are we actually the intelligent ones? The argument can be made that we lack a necessary characteristic to be considered truly intelligent life forms.
Truly intelligent creatures would be struggling with three problems if they found themselves in our situation as human beings on Earth in the first decades of this 21st century;
1. Mortality. With technology possible to delay death and eventually reverse the aging process, intelligent beings would be directing the balance of planetary resources towards conquering “natural” death.
2. Threats. With technology not just possible, but available, to defend the earth from extinction level events, the resources not being used to seek an answer to the first problem would necessarily be directed toward this second danger.
3. Progress. With science advancing and accelerating, the future prospects for engineering humans for greater intelligence and eventually building super intelligent machines are clear. Crystal clear. Not addressing these prospects is a clear warning that we are, as individuals, as a species, and as a living planet, headed not toward a bright future, but in the opposite direction toward a dead and final end.
One engineered pathogen will destroy us forever. One impact larger than average will destroy us forever. The reasoning that death is somehow “natural” which drives us to ignore the subject of destruction will destroy us forever. Earth changes are inevitable and taking place now- despite our faith in television and popular culture that everything is fun and games. Man is not the measure of all things. We think tomorrow will come just like yesterday- but it will not.
The Truth about Space Travel is that there are no stargates or warp drives that will take us across the galaxy like commecial airliners or cruise ships take us across oceans. If we do wake up and change our course, space voyages will take centuries and human expansion will be measured in millenia. We will be frozen when we travel to distant stars. And this survivable freezing will mark the beginning of a new age since being able to delay death by freezing will completely transform life. The first such successful procedure will mean the end of the world as we know it- and the beginning of a new civilization.
Though unknown to the public, the atomic bomb and then the hydrogen bomb marked the true beginning of the Space Age. Hydrogen bombs can push cities in space, hollow moons, to some percentage of the speed of light. These cities can travel to other stars, such as Epsilon Eridani with it’s massive asteroid belt. And there more artificial hollow moons can be mass produced to provide new worlds to live in. This is not fiction I am speaking of but something we could do right now- today. We only lack the procedure to freeze and successfully revive a human being. It is, indeed, stranger than fiction.
In Beam Propulsion we have the answer to bending the rocket equation to our will and allowing millions and eventually billions of human beings to migrate into space. Just as Verne and Wells made accurate predictions of the decades to come, we now are seeing the possible obvious future unfolding before our eyes.
But the most possible and probable obvious future at this moment is destruction. The end of days. Unless we do something. You and I and everyone you know is involved in this. Let’s get started.
Recently Seth Shostak of the SETI Institute, wrote an article in the Huffington Post How to Find Extraterrestrial Life. He had proposed that the search for extraterrestrial life was a three-way horse race. According to Shostak:
(1) Discover Life Nearby: This is the search for life in our solar system.
(2) Sniff It Out: Do the sort of spectral analysis that might detect atmospheric gases caused by biology.
(3) Eavesdrop On ET: Otherwise known as SETI, is the effort to detect radio signals or laser flashes from technically savvy extraterrestrials.
Neat, Shostak has set the frame work for further dscussions. Note that the (1) is the search for the existance of life based molecules. That (2) is the search for life forms, whether past or present. And (3) is the search for extraterrestrial intelligence.
He says that a priori all are equally likely to be successful. Lets think again.
With respect to (1) Discover Life Nearby, lets look at the record. Using the Mars Exploration Rovers, Spirit & Opportunity, as examples, Spirit which was 2.3m wide, covered 8.81 km over 581 sols (a Martian day that is approximately an Earth day), that is approximately 19 m2 per day. Given that the surface of Mars is 144,798,500 km2 it will take Spirit about 7.6 x 1012 days or 208,340,844 centuries, to examine the total surface of Mars. That is, assuming randomness, and that life did exist on Mars in the past, the quick & dirty probability of finding life on Mars on any day with current technology is 1.3 x 10-13. We have a better idea of Mars. It is mostly barren. However, not a clue about the Europa the moon of Jupiter, that is believed to have oceans beneath its ice.
With current projections it likely that NASA will have a satellite at Europa in the 2020–2030 time frame.
So, we can make 2 types of guesses. Assuming that life started on Europa some millions ago, then the probability (from a detection perspective) of finding life on Europa is good, close to 1. However, if Europa is a liquid version of Mars, then the probability is on the order of 1 x 10-13.
Therefore, the time frame for discovery of extraterrestrial life by (1) Discover Life Nearby, is about 2025 assuming no budgets cuts or other re-prioritizations.
With respect to (2) Sniff It Out, scientists estimate that there are about 1 x 1010 Earth like planets in our Milky Way. Lets assume that the Goldilocks Zone is a necessity. Using Pluto as the outer extreme of planets in a Star Local system, and Mars and Venus as boundaries of our Goldilocks Zone, then the approximate probability of finding one of these Earth-like planets in the Goldilocks Zone is 2.89 x 10-2. This reduces the number of Earth-like planets capable of supporting life to 289,340,102. Or the probability of finding life on at least one of these planets (assuming life is present) is at least 3.45 x 10-9.
I would estimate that the time frame for detecting extraterrestrial life is between today, and 35 years from now to 2047.
It could be any day now as the Dutch using the Very Large Telescope in the Chilean Andes have detected carbon monoxide on a planet hugging the star Tau Bootis that is 51 light-years away. The other end of my estimate is 2047. This is because developing a technology like the James Webb telescope was 30 years in the making.
So (2) Sniff It Out, has a better chance of finding evidence of life than (1) Discover Life Nearby.
Now how about (3) Eavesdrop On ET? As the author of the 12-year study An Introduction to Gravity Modification, it is slim. Sorry, Tarter, Shostak and all of you at the SETI Institute. But wait, I haven’t finished.
Look at our civilization. In 1895 Guglielmo Marconi proved that long distance radio transmission was possible. In 117 years we have exponentially evolved our technological sophistication to what it is today, 2012.
As the author of the 12-year study An Introduction to Gravity Modification I have proposed (see page 195) the existence of subspace, where everything is probabilistic, and light speed is not a restriction. Therefore, if confirmed, there is the strong possibility that by 2025/2035 this planet will go radio silent, because all our transmissions will be through subspace.
That is, the window to observe a radio intelligent extraterrestrial civilization is about 100 to 150 years, then they go silent. 100–150 years is an immensely thin slice or duration compared to the distances of stars even within our own galaxy, the Milky Way. Or the probability of detecting extraterrestrial radio transmissions within our own galaxy is approximately 1.25 x 10-6. It is actually a little better than this but I am using quick & dirty for this blog posting, and this will do. This is much better than a posteriori 1 x 10-13 for (1) Discover Life Nearby and 3.45 x 10-9 for (2) Sniff It Out.
So SETI, keep eavesdropping, and we can expect confirmation of Extraterrestrial Life by 2047 latest.
—————————————————————————————————
Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative
High energy experiments like the LHC at the nuclear research centre CERN are extreme energy consumers (needing the power of a nuclear plant). Their construction is extremely costly (presently 7 Billion Euros) and practical benefits are not in sight. The experiments eventually pose existential risks and these risks have not been properly investigated.
It is not the first time that CERN announces record energies and news around April 1 – apparently hoping that some critique and concerns about the risks could be misinterpreted as an April joke. Additionally CERN regularly starts up the LHC at Easter celebrations and just before week ends, when news offices are empty and people prefer to have peaceful days with their friends and families.
CERN has just announced new records in collision energies at the LHC. And instead of conducting a neutral risk assessment, the nuclear research centre plans costly upgrades of its Big Bang machine. Facing an LHC upgrade in 2013 for up to CHF 1 Billion and the perspective of a Mega-LHC in 2022: How long will it take until risk researchers are finally integrated in a neutral safety assessment?
There are countless evidences for the necessity of an external and multidisciplinary safety assessment of the LHC. According to a pre-study in risk research, CERN fits less than a fifth of the criteria for a modern risk assessment (see the press release below). It is not acceptable that the clueless member states point at the operator CERN itself, while this regards its self-set security measures as sufficient, in spite of critique from risk researchers, continuous debates and the publication of further papers pointing at concrete dangers and even existential risks (black holes, strangelets) eventually arising from the experiments sooner or later. Presently science has to admit that the risk is disputed and basically unknown.
It will not be possible to keep up this ostrich policy much longer. Especially facing the planned upgrades of the LHC, CERN will be confronted with increasing critique from scientific and civil side that the most powerful particle collider has yet not been challenged in a neutral and multidisciplinary safety assessment. CERN has yet not answered to pragmatic proposals for such a process that also should constructively involve critics and CERN. Also further legal steps from different sides are possible.
The member states that are financing the CERN budget, the UN or private funds are addressed to provide resources to finally initiate a neutral and multidisciplinary risk assessment.
- CERN’s annual meeting to fix LHC schedules in Chamonix: Increasing energies. No external and multi-disciplinary risk assessment so far. Future plans targeting at costly LHC upgrade in 2013 and Mega-LHC in 2022.
- COMMUNICATION to CERN – For a neutral and multi-disciplinary risk assessment before any LHC upgrade
According to CERN’s Chamonix workshop (Feb. 6–10 2012) and a press release from today: In 2012 the collision energies of the world’s biggest particle collider LHC should be increased from 3.5 to 4 TeV per beam and the luminosity is planned to be increased by a factor of 3. This means much more particle collisions at higher energies.
CERN plans to shut down the LHC in 2013 for about 20 months to do a very costly upgrade (for CHF 1 Billion?) to run the LHC at double the present energies (7 TeV per beam) afterwards.
One might really ask where this should lead to – sooner or later – without the risks being properly investigated. Many critics from different fields are severely alarmed.
For comparison: The AMS 2 experiment for directly measuring cosmic rays in the atmosphere operates on a scale around 1.5 TeV. Very high energetic cosmic rays have only been measured indirectly (their impulse). Sort, velocity, mass and origin of these particles are unknown. In any way, the number of collisions under the extreme and unprecedented artificial conditions at the LHC is of astronomical magnitudes higher than anywhere else in the nearer cosmos.
There were many talks on machine safety at the Chamonix meeting. The safety of humans and environment obviously were not an official topic. That’s why critics turned to CERN in an open letter:
———————————————————– Communication on LHC Safety directed to CERN
For a neutral and multidisciplinary risk assessment to be done before any LHC upgrade
—————————- Communiqué to CERN —————————-
Dear management and scientists at CERN,
Astronomer and Leonardo-publisher Roger Malina recently emphasized that the main problem in research is that “curiosity is not neutral”. And he concluded: “There are certain problems where we cannot cloister the scientific activity in the scientific world, and I think we really need to break the model. I wish CERN, when they had been discussing the risks, had done that in an open societal context, and not just within the CERN context.”
Video of Roger Malina’s presentation at Ars Electronica, following prominent philosopher and leading constructivist Humberto Maturana’s remarkable lecture on science and “certainy”: http://www.youtube.com/watch?v=DOZS2qJrVkU
In the eyes of many critics a number of questions related to LHC safety are not ruled out and some of them have concrete and severe concerns. Also the comparability of the cosmic ray argument is challenged.
Without getting into details of the LHC safety discussion – this article in the well-recognized Physics arXiv Blog (MIT’s Technology Review) states: “Black Holes, Safety, and the LHC Upgrade — If the LHC is to be upgraded, safety should be a central part of the plans.”
Similar to pragmatic critics, the author claims in his closing remarks: “What’s needed, of course, is for the safety of the LHC to be investigated by an independent team of scientists with a strong background in risk analysis but with no professional or financial links to CERN.” http://www.technologyreview.com/blog/arxiv/27319/
The renowned Institute for Technology Assessment and Systems Analysis (ITAS) in Karlsruhe and other risk researchers have already signalized interest in cooperation. We think, in such a process, naturally also CERN and critics should be constructively involved.
Please act in favour of such a neutral and multi-disciplinary assessment, maybe already following the present Chamonix meeting. Even if you feel sure that there are no reasons for any concerns, this must be in your interest, while also being of scientific and public concern.
In the name of many others: […] ————————– LHC-Kritik / LHC-Critique www.LHC-concern.info
“LHC-Kritik/LHC-Critique – Network for Safety at experimental sub-nuclear Reactors”, is a platform articulating the risks related to particle colliders and experimental high energy physics. LHC-Critique has conducted a number of detailed papers demonstrating the insufficiency of the present safety measures under well understandable perspectives and has still got a law suit pending at the European Court of Human Rights.
Info on the outcomes of CERN’s annual meeting in Chamonix this week (Feb. 6–10 2012):
In 2012 LHC collision energies should be increased from 3.5 to 4 TeV per beam and the luminosity is planned to be highly increased. This means much more particle collisions at higher energies.
CERN plans to shut down the LHC in 2013 for about 20 months to do a very costly upgrade (CHF 1 Billion?) to run the LHC at 7 TeV per beam afterwards.
Future plans: A High-Luminosity LHC (HL-LHC) is planned, “tentatively scheduled to start operating around 2022” — with a beam energy increased from 7 to 16.5 TeV(!).
One might really ask where this should lead to – sooner or later – without the risks being properly investigated.
For comparison: The AMS experiment for directly measuring cosmic rays in the atmosphere operates on a scale around 1.5 TeV. Very high energetic cosmic rays have only been measured indirectly (their impulse). Sort, velocity, mass and origin of these particles are unknown. In any way, the number of collisions under the extreme and unprecedented artificial conditions at the LHC is of astronomical magnitudes higher than anywhere else in the nearer cosmos.
There were many talks on machine safety at the Chamonix meeting. The safety of humans and environment obviously were not an official topic. No reaction on the recent claim for a really neutral, external and multi-disciplinary risk assessment by now.
Official reports from the LHC performance workshop by CERN Bulletin:
Famous Chilean philosopher Humberto Maturana describes “certainty” in science as subjective emotional opinion and astonishes the physicists’ prominence. French astronomer and “Leonardo” publisher Roger Malina hopes that the LHC safety issue would be discussed in a broader social context and not only in the closer scientific framework of CERN.
The latest renowned “Ars Electronica Festival” in Linz (Austria) was dedicated in part to an uncritical worship of the gigantic particle accelerator LHC (Large Hadron Collider) at the European Nuclear Research Center CERN located at the Franco-Swiss border. CERN in turn promoted an art prize with the idea to “cooperate closely” with the arts. This time the objections were of a philosophical nature – and they had what it takes.
In a thought provoking presentation Maturana addressed the limits of our knowledge and the intersubjective foundations of what we call “objective” and “reality.” His talk was spiked with excellent remarks and witty asides that contributed much to the accessibility of these fundamental philosophical problems: “Be realistic, be objective!” Maturana pointed out, simply means that we want others to adopt our point of view. The great constructivist and founder of the concept of autopoiesis clearly distinguished his approach from a solipsistic position.
Given Ars Electronica’s spotlight on CERN and its experimental sub-nuclear research reactor, Maturana’s explanations were especially important, which to the assembled CERN celebrities may have come in a mixture of an unpleasant surprise and a lack of relation to them.
During the question-and-answer period, Markus Goritschnig asked Maturana whether it wasn’t problematic that CERN is basically controlling itself and discarding a number of existential risks discussed related to the LHC — including hypothetical but mathematically demonstrable risks also raised — and later downplayed — by physicists like Nobel Prize winner Frank Wilczek, and whether he thought it necessary to integrate in the LHC safety assessment process other sciences aside from physics such as risk search. In response Maturana replied (in the video from about 1:17): “We human beings can always reflect on what we are doing and choose. And choose to do it or not to do it. And so the question is, how are we scientists reflecting upon what we do? Are we taking seriously our responsibility of what we do? […] We are always in the danger of thinking that, ‘Oh, I have the truth’, I mean — in a culture of truth, in a culture of certainty — because truth and certainty are not as we think — I mean certainty is an emotion. ‘I am certain that something is the case’ means: ‘I do not know’. […] We cannot pretend to impose anything on others; we have to create domains of interrogativity.”
Disregarding these reflections, Sergio Bertolucci (CERN) found the peer review system among the physicists’ community a sufficient scholarly control. He refuted all the disputed risks with the “cosmic ray argument,” arguing that much more energetic collisions are naturally taking place in the atmosphere without any adverse effect. This safety argument by CERN on the LHC, however, can also be criticized under different perspectives, for example: Very high energetic collisions could be measured only indirectly — and the collision frequency under the unprecedented artificial and extreme conditions at the LHC is of astronomical magnitudes higher than in the Earth’s atmosphere and anywhere else in the nearer cosmos.
The second presentation of the “Origin” Symposium III was held by Roger Malina, an astrophysicist and the editor of “Leonardo” (MIT Press), a leading academic journal for the arts, sciences and technology.
Malina opened with a disturbing fact: “95% of the universe is of an unknown nature, dark matter and dark energy. We sort of know how it behaves. But we don’t have a clue of what it is. It does not emit light, it does not reflect light. As an astronomer this is a little bit humbling. We have been looking at the sky for millions of years trying to explain what is going on. And after all of that and all those instruments, we understand only 3% of it. A really humbling thought. […] We are the decoration in the universe. […] And so the conclusion that I’d like to draw is that: We are really badly designed to understand the universe.”
The main problem in research is: “curiosity is not neutral.” When astrophysics reaches its limits, cooperation between arts and science may indeed be fruitful for various reasons and could perhaps lead to better science in the end. In a later communication Roger Malina confirmed that the same can be demonstrated for the relation between natural sciences and humanities or social sciences.
However, the astronomer emphasized that an “art-science collaboration can lead to better science in some cases. It also leads to different science, because by embedding science in the larger society, I think the answer was wrong this morning about scientists peer-reviewing themselves. I think society needs to peer-review itself and to do that you need to embed science differently in society at large, and that means cultural embedding and appropriation. Helga Nowotny at the European Research Council calls this ‘socially robust science’. The fact that CERN did not lead to a black hole that ended the world was not due to peer-review by scientists. It was not due to that process.”
One of Malina’s main arguments focused on differences in “the ethics of curiosity”. The best ethics in (natural) science include notions like: intellectual honesty, integrity, organized scepticism, dis-interestedness, impersonality, universality. “Those are the believe systems of most scientists. And there is a fundamental flaw to that. And Humberto this morning really expanded on some of that. The problem is: Curiosity is embodied. You cannot make it into a neutral ideal of scientific curiosity. And here I got a quote of Humberto’s colleague Varela: “All knowledge is conditioned by the structure of the knower.”
In conclusion, a better co-operation of various sciences and skills is urgently necessary, because: “Artists asks questions that scientists would not normally ask. Finally, why we want more art-science interaction is because we don’t have a choice. There are certain problems in our society today that are so tough we need to change our culture to resolve them. Climate change: we’ve got to couple the science and technology to the way we live. That’s a cultural problem, and we need artists working on that with the scientists every day of the next decade, the next century, if we survive it.
Then Roger Malina directly turned to the LHC safety discussion and articulated an open contradiction to the safety assurance pointed out before: He would generally hope for a much more open process concerning the LHC safety debate, rather than discussing this only in a narrow field of particle physics, concrete: “There are certain problems where we cannot cloister the scientific activity in the scientific world, and I think we really need to break the model. I wish CERN, when they had been discussing the risks, had done that in an open societal context, and not just within the CERN context.”
Presently CERN is holding its annual meeting in Chamonix to fix LHC’s 2012 schedules in order to increase luminosity by a factor of four for maybe finally finding the Higgs Boson – against a 100-Dollar bet of Stephen Hawking who is convinced of Micro Black Holes being observed instead, immediately decaying by hypothetical “Hawking Radiation” — with God Particle’s blessing. Then it would be himself gaining the Nobel Prize Hawking pointed out. Quite ironically, at Ars Electronica official T-Shirts were sold with the “typical signature” of a micro black hole decaying at the LHC – by a totally hypothetical process involving a bunch of unproven assumptions.
In 2013 CERN plans to adapt the LHC due to construction failures for up to CHF 1 Billion to run the “Big Bang Machine” at double the present energies. A neutral and multi-disciplinary risk assessment is still lacking, while a couple of scientists insist that their theories pointing at even global risks have not been invalidated. CERN’s last safety assurance comparing natural cosmic rays hitting the Earth with the LHC experiment is only valid under rather narrow viewpoints. The relatively young analyses of high energetic cosmic rays are based on indirect measurements and calculations. Sort, velocity, mass and origin of these particles are unknown. But, taking the relations for granted and calculating with the “assuring” figures given by CERN PR, within ten years of operation, the LHC under extreme and unprecedented artificial circumstances would produce as many high energetic particle collisions as occur in about 100.000 years in the entire atmosphere of the Earth. Just to illustrate the energetic potential of the gigantic facility: One LHC-beam, thinner than a hair, consisting of billions of protons, has got the power of an aircraft carrier moving at 12 knots.
This article in the Physics arXiv Blog (MIT’s Technology Review) reads: “Black Holes, Safety, and the LHC Upgrade — If the LHC is to be upgraded, safety should be a central part of the plans.”, closing with the claim: “What’s needed, of course, is for the safety of the LHC to be investigated by an independent team of scientists with a strong background in risk analysis but with no professional or financial links to CERN.” http://www.technologyreview.com/blog/arxiv/27319/
Australian ethicist and risk researcher Mark Leggett concluded in a paper that CERN’s LSAG safety report on the LHC meets less than a fifth of the criteria of a modern risk assessment. There but for the grace of a goddamn particle? Probably not. Before pushing the LHC to its limits, CERN must be challenged by a really neutral, external and multi-disciplinary risk assessment.
Video recordings of the “Origin III” symposium at Ars Electronica: Presentation Humberto Maturana:
Communication on LHC Safety directed to CERN Feb 10 2012 For a neutral and multidisciplinary risk assessment to be done before any LHC upgrade http://lhc-concern.info/?page_id=139
More info, links and transcripts of lectures at “LHC-Critique — Network for Safety at experimental sub-nuclear Reactors”:
Twenty years ago, way back in the primordial soup of the early Network in an out of the way electromagnetic watering hole called USENET, this correspondent entered the previous millennium’s virtual nexus of survival-of-the-weirdest via an accelerated learning process calculated to evolve a cybernetic avatar from the Corpus Digitalis. Now, as columnist, sci-fi writer and independent filmmaker, [Cognition Factor — 2009], with Terence Mckenna, I have filmed rocket launches and solar eclipses for South African Astronomical Observatories, and produced educational programs for South African Large Telescope (SALT). Latest efforts include videography for the International Astronautical Congress in Cape Town October 2011, and a completed, soon-to-be-released, autobiography draft-titled “Journey to Everywhere”.
Cognition Factor attempts to be the world’s first ‘smart movie’, digitally orchestrated for the fusion of Left and Right Cerebral Hemispheres in order to decode civilization into an articulate verbal and visual language structured from sequential logical hypothesis based upon the following ‘Big Five’ questions,
1.) Evolution Or Extinction? 2.) What Is Consciousness? 3.) Is God A Myth? 4.) Fusion Of Science & Spirit? 5.) What Happens When You Die?
Even if you believe that imagination is more important than knowledge, you’ll need a full deck to solve the ‘Arab Spring’ epidemic, which may be a logical step in the ‘Global Equalisation Process as more and more of our Planet’s Alumni fling their hats in the air and emit primal screams approximating; “we don’t need to accumulate (so much) wealth anymore”, in a language comprising of ‘post Einsteinian’ mathematics…
Conjecture: “A fast frictionless ball that recurrently passes through “grooves” with a lowered, locally time-periodic potential loses energy on average in forward time for non-selected initial conditions.”
Even a single such groove on a ring predictably suffices. This mechanical toy then qualifies as a prototype example for dynamical friction.
Corollary: If the vibrating grooves are replaced by vibrating mounds, the ball statistically gains energy in forward time for non-selected initial conditions.
Conclusion: These are the 2 deterministic prototypes of statistical dynamical behavior in the cosmos: cryodynamics and thermodynamics. Life is an implication of the latter. The former is still largely unexplored. I thank my Tübingen group for discussions.
after posting this on facebook.com and seeing its shared on Scribd.com I was a bit shocked by the community of reads in their disregard for these thoughts on Femtotechnology. One reader was quoted to say
I don’t understand why people bother talking about femtotech when we barely even have nanotech…
And while the reader’s voice should be heard, I like to think that if we can imagine it, its worth being a part of the tool box. These ideas are some +50 years in the making and just as nanotech or any other tech this literature predating our abilities is necessary in crafting human kinds exploration. So this entry is a bit activist, and so what smile #fullspeedahead.