Toggle light / dark theme

One of the unsung workhorses of modern technology is the humble interconnect. This is essentially a wire or set of wires that link one part of an electronic system to another. In ordinary silicon chips, interconnect can take up most of the area of a chip; and the speed and efficiency with which information can travel along these interconnects, is a major limiting factor in computing performance.

So it’s no wonder that physicists and engineers are creating new generations of interconnect that will become the backbone of information processing machines of the future.

Read more

Cryptographers are working on new encryption methods able to protect today’s Internet communications from future quantum computers that can be able to break today’s cryptography techniques. The researchers have developed upgrades to the Internet’s core encryption protocol that will prevent quantum computer users from intercepting Internet communications.

Read more

Quoted: “Sometimes decentralization makes sense.

Filament is a startup that is taking two of the most overhyped ideas in the tech community—the block chain and the Internet of things—and applying them to the most boring problems the world has ever seen. Gathering data from farms, mines, oil platforms and other remote or highly secure places.

The combination could prove to be a powerful one because monitoring remote assets like oil wells or mining equipment is expensive whether you are using people driving around to manually check gear or trying to use sensitive electronic equipment and a pricey a satellite internet connection.

Instead Filament has built a rugged sensor package that it calls a Tap, and technology network that is the real secret sauce of the operation that allows its sensors to conduct business even when they aren’t actually connected to the internet. The company has attracted an array of investors who have put $5 million into the company, a graduate of the Techstars program. Bullpen Capital led the round with Verizon Ventures, Crosslink Capital, Samsung Ventures, Digital Currency Group, Haystack, Working Lab Capital, Techstars and others participating.

To build its technology, Filament is using a series of protocols that include the blockchain transaction database behind Bitcoin; BitTorrent, the popular peer-to-peer file sharing software; Jose, a contract management protocol that is also used in the OAuth authentication service that lets people use their Facebook ID to log in and manage permissions to other sites around the web;TMesh, a long-range mesh networking technology andTelehash for private messaging.”

“This cluster of technologies is what enables the Taps to perform some pretty compelling stunts, such as send small amounts of data up to 9 miles between Taps and keep a contract inside a sensor for a year or so even if that sensor isn’t connected to the Internet. In practical terms, that might mean that the sensor in a field gathering soil data might share that data with other sensors in nearby fields belonging to other farmers based on permissions the soil sensor has to share that data. Or it could be something a bit more complicated like a robotic seed tilling machine sensing that it was low on seed and ordering up another bag from inventory based on a “contract” it has with the dispensing system inside a shed on the property.

The potential use cases are hugely varied, and the idea of using a decentralized infrastructure is fairly novel. Both IBM and Samsung have tested out using a variation of the blockchain technology for storing data in decentralized networks for connected devices. The idea is that sending all of that data to the cloud and storing it for a decade or so doesn’t always make economic sense, so why not let the transactions and accounting for them happen on the devices themselves?

That’s where the blockchain and these other protocols come in. The blockchain is a great way to store information about a transaction in a distributed manner, and because its built into the devices there’s no infrastructure to support for years on end. When combined with mesh radio technologies such as TMesh it also becomes a good way to build out a network of devices that can communicate with each other even when they don’t have connectivity.”

Read the Article, and watch the Video, here > http://fortune.com/2015/08/18/filament-blockchain-iot/

e50f4fe4-414f-11e5-b98b-87c7270955cf.img

“Electronic sports (esports), or competitive computer gaming, is an industry on the move. Depending on who you ask, there are somewhere between 90 million to 135 million esports enthusiasts — defined as those who watch gaming regularly, online or off — and more than double that number of occasional viewers. According to a recent SuperData report, the esports sector will this year generate an estimated revenue of $621m worldwide.”

Read more

Scientists at the University of Vienna and the Austrian Academy of Sciences have developed a new quantum computing technique in which operations occur without a well-defined order. The new technique accomplished a task more efficiently than a standard quantum computer, and could open the way to faster quantum computing.

Read more

A new optical chip that can process photons in a dizzying number of infinite ways has been developed by two research teams. Researchers from the University of Bristol in the UK and Nippon Telegraph and Telephone in Japan (NTT) are behind the breakthrough in quantum computing. The means to solve daunting problems such as the ability to design new life-saving drugs; perform advanced calculations that are a step or two beyond even supercomputers; and analyze weather patterns for more accurate forecasting has just received a major boost.

A group of researchers have pulled off a staggering feat; they’ve developed a silicon-based optical chip that is fully reprogrammable and can process photons in every way imaginable and then some, reports Phys.org.

Prof. Jeremy O’Brien, the Director of the Centre for Quantum Photonics at Bristol University where researchers masterminded the development of the chip, said:

Read more

Computers are really, really good at recognizing faces… For people who don’t want to be found, or just enjoy the previously unquestioned ability to travel without being tracked, facial recognition poses a risk. As a solution, Japan’s National Institute of Informatics (NIII) created glasses that make faces unreadable to machines.

Image Credit: flickr/Steve Jurvetson.

Read more

Researchers from the University of Bristol in the UK and Nippon Telegraph and Telephone (NTT) in Japan, have developing an optical chip that can process photons in an infinite number of ways.

It’s a major step forward in creating a quantum computer to solve problems such as designing new drugs, superfast database searches, and performing otherwise intractable mathematics that aren’t possible for super computers.

The fully reprogrammable chip brings together a multitude of existing quantum experiments and can realise a plethora of future protocols that have not even been conceived yet, marking a new era of research for quantum scientists and engineers at the cutting edge of quantum technologies.

Read more