Toggle light / dark theme

I am taking the advice of a reader of this blog and devoting part 2 to examples of old school and modern movies and the visionary science they portray.

Things to Come 1936 — Event Horizon 1997
Things to Come was a disappointment to Wells and Event Horizon was no less a disappointment to audiences. I found them both very interesting as a showcase for some technology and social challenges.… to come- but a little off the mark in regards to the exact technology and explicit social issues. In the final scene of Things to Come, Raymond Massey asks if mankind will choose the stars. What will we choose? I find this moment very powerful- perhaps the example; the most eloguent expression of the whole genre of science fiction. Event Horizon was a complete counterpoint; a horror movie set in space with a starship modeled after a gothic cathedral. Event Horizon had a rescue crew put in stasis for a high G several month journey to Neptune on a fusion powered spaceship. High accelleration and fusion brings H-bombs to mind, and though not portrayed, this propulsion system is in fact a most probable future. Fusion “engines” are old hat in sci-fi despite the near certainty the only places fusion will ever work as advertised are in a bomb or a star. The Event Horizon, haunted and consigned to hell, used a “gravity drive” to achieve star travel by “folding space.” Interestingly, a recent concept for a black hole powered starship is probably the most accurate forecast of the technology that will be used for interstellar travel in the next century. While ripping a hole in the fabric of space time may be strictly science fantasy, for the next thousand years at least, small singularity propulsion using Hawking radiation to achieve a high fraction of the speed of light is mathematically sound and the most obvious future.

https://lifeboat.com/blog/2012/09/only-one-star-drive-can-work-so-far

That is, if humanity avoids an outbreak of engineered pathogens or any one of several other threats to our existence in that time frame.

Hand in hand with any practical method of journeys to other star systems in the concept of the “sleeper ship.” Not only as inevitable as the submarine or powered flight was in the past, the idea of putting human beings in cold storage would bring tremendous changes to society. Suspended animation using a cryopreservation procedure is by far the most radical and important global event possible, and perhpas probable, in the near future. The ramifications of a revivable whole body cryopreservation procedure are truly incredible. Cryopreservation would be the most important event in the history of mankind. Future generations would certainly mark it as the beginning of “modern” civilization. Though not taken seriously anymore than the possiblility of personal computers were, the advances in medical technology make any movies depicting suspended animation quite prophetic.

The Thing 1951/Them 1954 — Deep Impact 1998/Armegeddon 1998
These four movies were essentially about the same.…thing. Whether a space vampire not from earth in the arctic, mutated super organisms underneath the earth, or a big whatever in outer space on a collision course with earth, the subject was a monstrous threat to our world, the end of humankind on earth being the common theme. The lifeboat blog is about such threats and the The Thing and Them would also appeal to any fan of Barbara Ehrenreich’s book, Blood Rites. It is interesting that while we appreciate in a personal way what it means to face monsters or the supernatural, we just do not “get” the much greater threats only recently revealed by impact craters like Chixculub. In this way these movies dealing with instinctive and non-instinctive realized threats have an important relationship to each other. And this connection extends to the more modern sci-fi creature features of past decades. Just how much the The Thing and Them contributed to the greatest military sci-fi movie of the 20th century (Aliens, of course) will probably never be known. Director James Cameron once paid several million dollars out of court to sci-fi writer Harlan Ellison after admitting during an interview to using Ellison’s work- so he will not be making that mistake again. The second and third place honors, Starship Troopers and Predator, were both efforts of Dutch Film maker Paul Verhoeven.

While The Thing and Them still play well, and Deep Impact, directed by James Cameron’s ex-wife, is a good flick and has uncanny predictive elements such as a black president and a tidal wave, Armegeddon is worthless. I mention this trash cinema only because it is necessary for comparison and to applaud the 3 minutes when the cryogenic fuel transfer procedure is seen to be the farce that it is in actuality. Only one of the worst movie directors ever, or the space tourism industry, would parade such a bad idea before the public.
Ice Station Zebra 1968 — The Road 2009
Ice Station Zebra was supposedly based on a true incident. This cold war thriller featured Rock Hudson as the penultimate submarine commander and was a favorite of Howard Hughes. By this time a recluse, Hughes purchased a Las Vegas TV station so he could watch the movie over and over. For those who have not seen it, I will not spoil the sabotage sequence, which has never been equaled. I pair Ice Station Zebra and The Road because they make a fine quartet, or rather sixtet, with The Thing/Them and Deep Impact/Armegeddon.

The setting for many of the scenes in these movies are a wasteland of ice, desert, cometoid, or dead forest. While Armegeddon is one of the worst movies ever made on a big budget, The Road must be one of the best on a small budget- if accuracy is a measure of best. The Road was a problem for the studio that produced it and release was delayed due to the reaction of the test audiences. All viewers left the theatre profoundly depressed. It is a shockingly realistic movie and disturbed to the point where I started writing about impact deflection. The connection between Armegeddon and The Road, two movies so different, is the threat and aftermath of an asteroid or comet impact. While The Road never specifies an impact as the disaster that ravaged the planet, it fits the story perfectly. Armegeddon has a few accurate statements about impacts mixed in with ludicrous plot devices that make the story a bad experience for anyone concerned with planetary protection. It seems almost blasphemous and positively criminal to make such a juvenile for profit enterprise out of an inevitable event that is as serious as serious gets. Do not watch it. Ice Station Zebra, on the other hand, is a must see and is in essence a showcase of the only tools available to prevent The Road from becoming reality. Nuclear weapons and space craft- the very technologies that so many feared would destroy mankind, are the only hope to save the human race in the event of an impending impact.

Part 3:
Gog 1954 — Stealth 2005
Fantastic Voyage 1966 — The Abyss 1989
And notable moments in miscellaneous movies.

Steamships, locomotives, electricity; these marvels of the industrial age sparked the imagination of futurists such as Jules Verne. Perhaps no other writer or work inspired so many to reach the stars as did this Frenchman’s famous tale of space travel. Later developments in microbiology, chemistry, and astronomy would inspire H.G. Wells and the notable science fiction authors of the early 20th century.

The submarine, aircraft, the spaceship, time travel, nuclear weapons, and even stealth technology were all predicted in some form by science fiction writers many decades before they were realized. The writers were not simply making up such wonders from fanciful thought or childrens ryhmes. As science advanced in the mid 19th and early 20th century, the probable future developments this new knowledge would bring about were in some cases quite obvious. Though powered flight seems a recent miracle, it was long expected as hydrogen balloons and parachutes had been around for over a century and steam propulsion went through a long gestation before ships and trains were driven by the new engines. Solid rockets were ancient and even multiple stages to increase altitude had been in use by fireworks makers for a very long time before the space age.

Some predictions were seen to come about in ways far removed yet still connected to their fictional counterparts. The U.S. Navy flagged steam driven Nautilus swam the ocean blue under nuclear power not long before rockets took men to the moon. While Verne predicted an electric submarine, his notional Florida space gun never did take three men into space. However there was a Canadian weapons designer named Gerald Bull who met his end while trying to build such a gun for Saddam Hussien. The insane Invisible Man of Wells took the form of invisible aircraft playing a less than human role in the insane game of mutually assured destruction. And a true time machine was found easily enough in the mathematics of Einstein. Simply going fast enough through space will take a human being millions of years into the future. However, traveling back in time is still as much an impossibillity as the anti-gravity Cavorite from the First Men in the Moon. Wells missed on occasion but was not far off with his story of alien invaders defeated by germs- except we are the aliens invading the natural world’s ecosystem with our genetically modified creations and could very well soon meet our end as a result.

While Verne’s Captain Nemo made war on the death merchants of his world with a submarine ram, our own more modern anti-war device was found in the hydrogen bomb. So destructive an agent that no new world war has been possible since nuclear weapons were stockpiled in the second half of the last century. Neither Verne or Wells imagined the destructive power of a single missile submarine able to incinerate all the major cities of earth. The dozens of such superdreadnoughts even now cruising in the icy darkness of the deep ocean proves that truth is more often stranger than fiction. It may seem the golden age of predictive fiction has passed as exceptions to the laws of physics prove impossible despite advertisments to the contrary. Science fiction has given way to science fantasy and the suspension of disbelief possible in the last century has turned to disappointment and the distractions of whimsical technological fairy tales. “Beam me up” was simply a way to cut production costs for special effects and warp drive the only trick that would make a one hour episode work. Unobtainium and wishalloy, handwavium and technobabble- it has watered down what our future could be into childish wish fulfillment and escapism.

The triumvirate of the original visionary authors of the last two centuries is completed with E.E. Doc Smith. With this less famous author the line between predictive fiction and science fantasy was first truly crossed and the new genre of “Space Opera” most fully realized. The film industry has taken Space Opera and run with it in the Star Wars franchise and the works of Canadian film maker James Cameron. Though of course quite entertaining, these movies showcase all that is magical and fantastical- and wrong- concerning science fiction as a predictor of the future. The collective imagination of the public has now been conditioned to violate the reality of what is possible through the violent maiming of basic scientific tenets. This artistic license was something Verne at least tried not to resort to, Wells trespassed upon more frequently, and Smith indulged in without reservation. Just as Madonna found the secret to millions by shocking a jaded audience into pouring money into her bloomers, the formula for ripping off the future has been discovered in the lowest kind of sensationalism. One need only attend a viewing of the latest Transformer movie or download Battlestar Galactica to appreciate that the entertainment industry has cashed in on the ignorance of a poorly educated society by selling intellect decaying brain candy. It is cowboys vs. aliens and has nothing of value to contribute to our culture…well, on second thought, I did get watery eyed when the young man died in Harrison Ford’s arms. I am in no way criticizing the profession of acting and value the talent of these artists- it is rather the greed that corrupts the ancient art of storytelling I am unhappy with. Directors are not directors unless they make money and I feel sorry that these incredibly creative people find themselves less than free to pursue their craft.

The archetype of the modern science fiction movie was 2001 and like many legendary screen epics, a Space Odyssey was not as original as the marketing made it out to be. In an act of cinema cold war many elements were lifted from a Soviet movie. Even though the fantasy element was restricted to a single device in the form of an alien monolith, every artifice of this film has so far proven non-predictive. Interestingly, the propulsion system of the spaceship in 2001 was originally going to use atomic bombs, which are still, a half century later, the only practical means of interplanetary travel. Stanly Kubrick, fresh from Dr. Strangelove, was tired of nukes and passed on portraying this obvious future.

As with the submarine, airplane, and nuclear energy, the technology to come may be predicted with some accuracy if the laws of physics are not insulted but rather just rudely addressed. Though in some cases, the line is crossed and what is rude turns disgusting. A recent proposal for a “NautilusX” spacecraft is one example of a completely vulgar denial of reality. Chemically propelled, with little radiation shielding, and exhibiting a ridiculous doughnut centrifuge, such advertising vehicles are far more dishonest than cinematic fabrications in that they decieve the public without the excuse of entertaining them. In the same vein, space tourism is presented as space exploration when in fact the obscene spending habits of the ultra-wealthy have nothing to do with exploration and everything to do with the attendent taxpayer subsidized business plan. There is nothing to explore in Low Earth Orbit except the joys of zero G bordellos. Rudely undressing by way of the profit motive is followed by a rude address to physics when the key private space scheme for “exploration” is exposed. This supposed key is a false promise of things to come.

While very large and very expensive Heavy Lift Rockets have been proven to be successful in escaping earth’s gravitational field with human passengers, the inferior lift vehicles being marketed as “cheap access to space” are in truth cheap and nasty taxis to space stations going in endless circles. The flim flam investors are basing their hopes of big profit on cryogenic fuel depots and transfer in space. Like the filling station every red blooded American stops at to fill his personal spaceship with fossil fuel, depots are the solution to all the holes in the private space plan for “commercial space.” Unfortunately, storing and transferring hydrogen as a liquified gas a few degrees above absolute zero in a zero G environment has nothing in common with filling a car with gasoline. It will never work as advertised. It is a trick. A way to get those bordellos in orbit courtesy of taxpayer dollars. What a deal.

So what is the obvious future that our present level of knowledge presents to us when entertaining the possible and the impossible? More to come.

Wednesday on the Opinion Pages of the NY Times the renowned Vinton Cerf “father of the internet” published an article titles Internet Access Is Not A Human Right. It could be argued that the key word here is “access”, but before I address access again, I should start with the definition of the internet. I had this debate while at Michigan State in October of 2010 with the philosopher Andrew Feenberg. I’ll do my best not to be redundant while everything is still live via the links in this article.

Perhaps the internet requires much more definition, as the roots of the word can be confusing. Inter: situated within – Net: any network or reticulated system of filaments or the like. Its terminology is synonymous with the “web” or a web, which requires multiple linkages to points of initiation in order to exist well. If this is the internet that Feenberg is referring to then I’d think it accurate. However, the internet is not actually a web of ever connected points. Information destinations are not required.

The internet is analogous to space. Regardless of whether or not we access space, its potential exists – we can access or insert entities of sorts into the space regardless of, if another user were present to receive information of sorts from the distributed. Space is a dynamic system of expanding material potential as is the internet’s material potential. The potential of the internet expands as users (or rather, potential users) access to the internet expands – access could come in many forms including, user population(s) growth or by computing speed or by computing power… The internet, regardless of the constraints of the word, it cannot be identified as a specific technology.

While visiting MSU, Feenberg uses a “ramp” as analogous with the internet, which was at the center of his mistake. I don’t mean to read gerontophobic, but based on the pervasive analysis that I’ve witnessed from Feenberg and Cerf’s generation; I’d have to accredit their perspective to the relatively similar changes in technology that they’ve seen during the 20th century. The difference in composition and utility of a technology (hardware, software, methodology) and that of the internet are synonymous with that of an air-craft and the expanding celestial matter beyond earth’s ionosphere (that’s a sufficient analogy).

Cerf wrote “technology is an enabler of rights, not a right itself. There is a high bar for something to be considered a human right.

He is correct! The problem exists when he identifies the internet as a technology, which it cannot be (to be redundant). This is in fact a human rights issue. It is perhaps the most significant human rights issue of our time, because of the internet role in providing the potential for transparencies in the public and private sectors. The deterministic nature of our technologies is bridging the cultural, political, legal, and economic GAPS of all our societies today, and if we as individuals allow a few mistaken “leaders” or the interests of institutions to control our ability to access a space, because of their resume, then we are all doomed. The implications of the masses adopting Cerf and Feenberg’s view on space are tremendous in building an ethically sound environment for human development.

Regarding Cerf’s word “access”, it may provide him an out from his varied rhetoric in the article. Near the end he transitions to civil rights where he writes “the responsibility of technology creators themselves to support human and civil rights” suggesting the internet hold egalitarian virtues. I’m no egalitarian, as it just doesn’t prove feasible in a world of, even, hyper-connected individuals.

While the ability to access an open space should not be prohibited, the technologies of certain kinds could be. Reference weapons of sorts. I’m no advocate for government supplying all of their citizens with camera phone (although it would be great idea for the individual and institution), but I am against governmental and other agents making efforts to restrict the individual’s ability to populate space with their entities aside from the technologies that one would hold on his/her person.

When the United Nations declared the Internet as a Human Right (PDF), they weren’t necessarily evaluating its full potential, but they were stressing that individuals should have the ability to be transparent and review information of all kinds as they so pleased, catering to the collective knowledge of the species and everything it supports. The problem with this article are the future implications of its rhetoric, even as he means well.

Tangent: Cerf having studied math, computer science, and IS for decades; knows as well as anyone that it is virtually (pun intended) impossible to prohibit internet expansion as small pockets of those educated in the knowledge community of development can find a way. Any computer (which would the blockage point) can be hacked its just a matter of time and will. I spent the last year consulting with Hewlett-Packard Global Info Security on multiple acquisitions of competitive companies and security tool providers, and as anyone in the IS/IT security industry can tell you, there are no solutions, only active management of incidents and problems. This is why methodologies are as (if not more) value than hard/software in modern business transactions. So then why wouldn’t Cerf think more thoroughly about this before publishing in the NY Times? Could it be because he has an equity stake (as an employee of multiple firms) in a less open space (internet). Speculation aside, I’m in the business services industry, I studied “control” specifically. Business is about control, which is the value proposition in establishing institutions virtues as separate from those of the individual. We can only forecast and manage risks well in areas that we can define and control. Business itself doesn’t require an suppressive type of control to make good calls on risks. A more transparent world could tell us all (individuals and institutions alike) more about the types of decisions that benefit the most in a society.

In the future let’s all make a conscious effort to keep spaces open and hope that the benefits incentivize philanthropists, entrepreneurs, and governments to provide technology to the masses at a rate that enhances the human condition.

–Originally at Integrationalism

The Journal for Biological & Health Innovation is accepting papers for peer review now. This journal is specific to Africa and our thoughts, theory, research, practice could have a huge impact on the expeditious development of the rest of the world technologically.

Video — U.S. Job Market — People Staying in Jobs Longer — WSJ.com.

The Cleveland Fed shows research that people staying in jobs for longer periods of time is requiring adding the economic shock of any crisis where lay-offs or retraction is involved. The problem with this is that research also shows that people out of work are less likely ever re-enter the work force.

While economists (per the this interview) wouldn’t look at this as a “structure problem” because of the forecasted potential for worker volume to return, it is likely that their opinions are a bit too faithful in the existing model of compensating laborers for a honest days work. The enduring jobs crisis can and should of course be looked at as an economic issue and even a political issue, but it would likely be better pursued as a socio-cultural and a legal issue.

The ideal of honesty and the preferred compensation for ones good work is perhaps too subjective; having stated that, the ability for an individual to own so greatly in lieu of the potentially many other individuals that cater to the discovery, development, and distribution of goods/services is (in my opinion) the root cause of our (nation, states, humans) wealth distribution and compensation problems.

Greetings fellow travelers, please allow me to introduce myself; I’m Mike ‘Cyber Shaman’ Kawitzky, independent film maker and writer from Cape Town, South Africa, one of your media/art contributors/co-conspirators.

It’s a bit daunting posting to such an illustrious board, so let me try to imagine, with you; how to regard the present with nostalgia while looking look forward to the past, knowing that a millisecond away in the future exists thoughts to think; it’s the mode of neural text, reverse causality, non-locality and quantum entanglement, where the traveller is the journey into a world in transition; after 9/11, after the economic meltdown, after the oil spill, after the tsunami, after Fukushima, after 21st Century melancholia upholstered by anti-psychotic drugs help us forget ‘the good old days’; because it’s business as usual for the 1%; the rest continue downhill with no brakes. Can’t wait to see how it all works out.

Please excuse me, my time machine is waiting…
Post cyberpunk and into Transhumanism

The California Dream Act.

The banking industry is likely California Dreaming about the day when more states get their act together. …For those of us who think that the US will see a bubble in the education industry caused by its efforts to distribute human kind’s knowledge communities outside of the affluent elite, they shouldn’t hold their breath.

The Cali Dream Act could seem like an altruistic attempt to empower our desperate relatives converging on US cities, but there are some fiscally desperate economics behind this proverbial triumph over “social evil”, as if such a thing ever existed…LOL

For-profit and Not-for-profit education is big business…consider the $4.9B income of the Apollo Group, owner of University of Phoenix or the pride of the west coast’s $16.5B endowment at Stanford University. All of these are affected by the arbitrage (my favorite word smile ) in an industry… losing applicants with the confidence that a degree or certificate is honestly their best investment.

One thing is for sure, the US is the largest knowledge community on the planet currently, and one thing it can still sell the world’s consumers on, is that they’ll want to tap into the experience in their quest to secure the ideal 20th century standard of success. To be redundant, the 20th century American Dream is still the benchmark for making it in 2011 for the vast majority world around us…even as those of us investing in the future would harshly disagree. Where better to catch a dream life than in California…or even Michigan, with residents exiting at record paces.

The reality is that undocumented immigrants are a new class of Americans or non-Americans to sell long-term deferred and/or short term deferred loans. Its an ideal way to build collateral on the balance sheet of a lending company ;-). I’m not only expecting for more states to echo California’s legislative desperation/foresight (call it how you like), but I am expecting for the near future to offer American educations with State and possibly Federal assistance (at a taxable premium + interest) to undocumented immigrants of the US… and even foreign nationals with no immediate intent on coming to the US for legal or illegal residency. It’ll be called globalization

The US education models designed by the non-profit traditional institutions and technologized (new word for me…lol) by the more agile for-profit institutions, will be distributed throughout the world at the rate of technologies acceptance in foreign countries.

And, of course, where there is government support (large pot of $), private speculation (smaller pots of $) will follow its low risks. fueling the distribution of what we know and what we are exploring.

Space is a hard sell these days. Aside from the persistent small community of die-hard space advocates and New Space entrepreneurs, the relevance of space to the society at large has generally declined since the grand achievements of the Space Race and even such great feats as the building of the ISS have garnered rather modest public attention. In recent years we have had more active astronauts than ever in history, yet few among the general public can name a single one. An appreciation of space science seems to have improved in recent years by virtue of the impressive visuals offered by orbital telescopes, space probes, and rovers. But the general public commitment to space development still dwindles in the face of mounting domestic issues. Most recently we have seen a drastic contraction of national space agencies in response to the current global economic turmoil. Programs are reduced, cut, or under looming threat. We hear pronouncements of deemphasis of costly manned space activity by the major national players in space development. The world leader in space, NASA, now drifts aimlessly, its premier launch system–controversial from the start, often dismissed as a boondoggle, and dragged along for far too long–finally succumbing to obsolescence without a replacement at-hand, leaving the agency dependent upon foreign nations and struggling for a semblance of direction and purpose. In this past few years, finding itself abandoned on both right and left sides of the political fence, it faced the very real possibility of being shut down altogether and now its partner DARPA talks of century-long space programs with no government involvement at all because the very idea of the US government having the coherence to accomplish anything that takes more than one electoral cycle to do has become implausible.

Overconfident to the extreme after recent very significant, yet still modest in the broad perspective, successes, the newest faction of the commercial space community, the New Space entrepreneurs, boast their readiness to pick up the slack, not quite cluing into the fact that the rope isn’t just dropped, it may be cut! Space industry has never been a very big industry despite the seemingly gigantic sticker prices of its hardware. The global space industry accounts for around 160 billion dollars annually. Soft drinks account for 350 billion. Coca Cola is bigger than NASA. Meanwhile, the lion’s share of commercial space service has always been for governments and the remaining largely telecommunications applications –after 50 years still the only proven way to make money in space- face slow decline as latency becomes increasingly critical to mainstream communications. The ‘grand convergence’ long anticipated in computing has now focused on the Internet which is steadily assimilating all forms of mainstream communication and media distribution. Despite a few service providers of last resort, satellites simply don’t work as a host for conventional Internet and physics precludes any solution to that. We owe recent surges in launch service demand more to war than anything else. Ultimately, we’re not looking at a privatization of national space systems. We’re looking at their outright obsolescence and an overall decline in the relevance of space activity of any sort short of science applications, which have no more need of astronauts than for manned submersibles and for the same reasons. The need for space services will not disappear but, as it stands now, has little likelihood of growth either–except on the back of war. Logically, what commercial space desperately needs is a program for the systematic cultivation of new applications the space agencies have never seriously pursued–new ways to make money there, particularly in an industrial context. And what do the mavericks of New Space have on offer in that context? Space tourism for the rich, during a time of global recession…

There is a great misconception today that the challenges of commercial space are merely technological problems waiting to be solved by that one new breakthrough propulsion technology that never materializes. But commercial air travel did not become ubiquitous by virtue of flight technology becoming miraculously cheap and powerful like microprocessors. It became ubiquitous by realizing markets of scale that supported aircraft of enormous size needing very large minimum operation economies of scale, where populations of millions in communities with well-heeled comfortable middle-classes are necessary to generate sufficient traffic to justify the existence of a single airport. A single A380 airliner costs almost as much as the development of a typical unmanned launch system. Air travel was never particularly successful in an industrial sense. Most stuff still moves around the world at the 20mph speed of ships. The New Deal and the remnant air support infrastructure of WWII were together probably more responsible for the modern airline industry than any engine or aircraft design–because they created the market. If it takes a population of millions to justify the existence of a single conventional airport for conventional airliners, what then a Pan-Am Orion?

For those who look to space as an insurance policy for life and the human civilization, this situation should be of much concern. Whether it be for averting the potential disasters of asteroid strikes or as a redoubt for some fraction of civilization in the event of any terrestrial disaster, a vast space-based infrastructure must be continually at-hand for such capability. Yet these kinds of threats do not themselves seem to have ever inspired sufficient concern in the general public or political leaders to demand such capability be established and maintained for its own sake. You cannot talk in public about such space contingencies and be taken remotely seriously. One could say we have been a bit too lucky as a civilization. There have been no small asteroid impacts in historic memory and few global existentially threatening events beyond those we human beings have created –and we’re very good at systematic denial of those. So this contingency capability relies on being incidental to other space development. That development has been inadequate for that to date, counting on future expansion that has never materialized. What then as we watch that development fizzle-out altogether? The essential cultural relevance of space development can be seen as crucial to the long-term survival of our species, and that’s in marked decline.

What happened to space? Just a generation ago this seemed to be a significant concern for the global society. Wherever you were in the world, whatever your station in life, space mattered in some way, even when the majority of activity was being pursed by just two conflicting superpower governments. In those two nations, a sense of vicarious participation in the space programs through the general contribution to national productivity spread across the society. We were all part of the space program and we all largely defined our future as a civilization–when we weren’t so scared witless as to doubt there was any–in the partial context of space development. When and why did this stop mattering to us? Can we make it matter again?

The Blessing and The Curse:

Space development owes a lot to Nikita Khrushchev. If any one man can be said to be largely responsible for the Space Age it was him–whatever we might think of his overall historic legacy. Wernher von Braun is largely responsible for the vision of space development that captivated the world at the time and, in partnership with Walt Disney, spread like a meme through the contemporary popular culture where it was echoed in countless ways in a diversity of popular media. They are why the US wound up with a civilian space program and not a ‘space force’, von Braun understanding that a strategic military imperative alone could never get us beyond Earth orbit. The movement for this civilian space program was well underway at the time and the Space Race a timely opportunity for it. But Khrushchev largely instigated the Space Race as we’ve come to understand it, set ad hoc the ground rules for the competition superpowers would engage in, and created the model of space agency process for development both major players would employ, even if supported by different infrastructures. Most importantly, he established the pursuit of specific space goals not as an extension of the arms race, as implied in the impact of Sputnik, but as a nationalist competition for geopolitical prestige through technical and industrial prowess. It was a peaceful, less dangerous, alternative to the arms race, even if the ultimate implication of this prowess in space was one of potential military might on Earth. It was a reinvention of the medieval tournament on a vastly more grand scale. And this is why, in seemingly such a short amount of time after the collapse of the Soviet Union, US and Russian space agencies could so readily become partners. There was never an animosity between these space programs and agencies, despite the bitter cultural animosity cultivated in mainstream society by Cold War propaganda. It was an attitude akin to olympic athletes.

Thus competitive nationalism proved a powerful force for driving space development. But it was ultimately an unsustainable one. At some point someone ‘won’. One could argue that the Space Race did not end with the US manned landing on the Moon but rather with the failures of the beautiful yet doomed Soviet N1 rocket. One might even say the Soviets lost the Space Race with the ouster of Khrushchev and the reestablishment of a more conservative Soviet internal order that likely contributed to the N1 failure. Apollo was doomed to a premature suspension even as the first astronauts set foot on the Moon, because without a competitor the nationalist imperative for space could not be sustained. As soon as this particular competition was over, the propaganda machine was directed elsewhere–inward against an eruption of civil unrest across the western world prompted by protracted poorly-rationalized wars, repeated political disillusionment, the subtle mass psychological effect of perpetual existential threat under the Cold War, race, class, and generational conflict, energy crisis, and the increasingly blatant excesses of corporate culture. To a certain degree, the Space Race itself had contributed to this by virtue of the change of social perspectives access to space had produced. We, for the first time as a whole global society, had seen the Earth as a whole and sensed our rather precarious position in the larger universe. This was a powerful thing. Culturally, we began to think of the world as a whole, of its systems as a whole, its resources finite and ourselves as planetary rather than state citizens. This, in particular, catalyzed a new popular international environmentalist movement of far greater scope than the conversation movements of the early 20th century.

At this time in history nationalism itself was dying in the western culture. The society now had a global, cosmopolitan, perspective. The basic belief of the public in the generally good intentions of government was lost–and remains lost. Almost no one in the world today, regardless of political alignment, now seriously believes their government has their best interests in mind, this attitude continually reinforced by scandal, war, and blatant expressions of authoritarianism and institutional violence continuing unabated to the present day. In the US nationalism was co-opted by extremist political conservatives, and thus discredited in the popular culture as a cynical tool of propaganda. (and both political parties bear equal share of the blame for that) Consequently, most everything that once served as a symbol of nationalist pride and identity in the past has become, to some degree, tainted, silly, childish, anachronistic in the manner of the weird aesthetic of a North Korean propaganda poster. And one of those symbols is the space program which, with the government abandonment of Apollo and the general public abandonment of the hopeful future envisioned by von Braun, lost its public mandate. Without that mandate NASA, in order to survive, was compelled to transform into just another state bureaucracy, ruled by the logic of a eunuch in the ancient Chinese imperial court and compelled to pander simultaneously to the absurd vanities of opposing political parties. Its programs since Apollo all reflect this kind of logic, which is why the general public often has a hard time comprehending their purpose and relevance and why they are such easy targets for accusations of folly and boondoggle. The public doesn’t understand the court games that must be played here–the very different kind of logic underlying the design of a Space Shuttle or ISS. It doesn’t have a lot to do with space. The public and the government have very different priorities for space summed up in the simple observation that while the public has always understood space as a place we intended to ultimately to go and live, government is not in the business of inventing new places for people to go and not pay taxes. Any commitment for space ever claimed by government has always been fundamentally disingenuous–a cover for another agenda that probably has nothing to do with space itself. Space agencies are stuck in the middle, at once trying to pay lip service to The Dream while ultimately beholden to the system that actually writes the checques.

This is how we have arrived at the sorry situation we find ourselves in with space development today and in order to overcome this we must seek a new basis for a mass cultural relevance to space. We must understand that the objectives we seek in space, in particular the objectives of space settlement and the establishment of the infrastructure we need to support those space-based contingencies for existential threats, cannot be rationalized entirely under the narcissistic imperatives of governments, strategic military imperatives, or the extremely narrow weltanschauung of commercial interests. This has to matter to us as a society in a very basic way. The imperative for space should be as fundamental to us as the imperative to reproduce, build careers, and build a better life. Only with such fundamental importance can space development achieve the necessary social and economic focus it needs to truly carry us to a spacefaring civilization. But on what basis this new relevance?

Six Degrees of Separation:

There is one very powerful aspect of space development that potentially links it very directly to the concerns everyday terrestrial life; the pursuit of the means to live in space essentially means the development of technology to sustainably go from dirt, rocks, and sunlight to a middle-class standard of living using systems on the scale of home appliances. What aspect of life on Earth would such capability NOT impact?

Today, the relevance of space activity is defined largely in terms of the social and economic dividends of ‘technology transfer’ characterized like a game of Six Degrees of Separation where agencies basically try to confabulate credit for every historic technical achievement short of fire and the wheel. No one really buys this anymore. Most certainly space development and science have made very great achievements but these become diluted in perceived social value when simultaneously associated with nebulous claims of connections so tenuous that even James Burke would be hard pressed to see them. The links between space activity and everyday life cannot be taken seriously when so tenuous. They must be seen as direct, immediate, and concrete.

One great opportunity for contemporary cultural relevance long overlooked by space agencies and companies alike is environmentalism. As noted earlier, our public exposure to a space perspective is one of the key factors in the creation of the environmental movement that we have today. Space science is largely responsible for our understanding of the global impact of pollution and the current understanding of Global Warming. Yet, right now, environmentalism sees space activity as nothing but pointless folly providing welfare to the military industrial complex. (even if, in reality, its fraction of contribution to the established aerospace industry would be lucky to be considered marginal) Why this disconnect? Part of this relates to environmentalism’s generally uneasy relationship to science, it’s roots in 19th century Romanticism and its fundamental opposition to Enlightenment philosophy seen as the root cause of the social and environment degradation inherent to the Industrial Revolution. Contemporary environmentalism is very willing to partner with science and exploit, for sake of its own public credibility, various science personalities where that suits its agenda. It will make heroes out of people like James Lovelock, and Jacque Cousteau. But it is just as willing to abandon science on grounds of its association with commercial technology and–getting back to those old roots–its reductionist perspectives. In their extremist factions, environmentalists today are just as anti-science as right-wing Christian fundamentalists and as doggedly Malthusianist as corporate Objectivists. But perhaps the most important reason for this disconnect is the underlying curse of the Space Age’s origins in nationalism and the relationship of space agencies to fundamentally discredited government, militaries, and the corporate military industrial complex environmentalists see as one of the greatest evils in the world today.

But this is not a perception the space agencies could not have overcome had they pursued a greater, more concerted, alignment to the pursuit of environmental science and renewable energy technology which, of necessity, it has pursued for its own in-space uses. Who understands more about renewable energy than NASA? Who has done as much research? Who else has put it to such cutting edge use? Do we not fuel rockets with hydrogen and power space stations with solar panels? These things could have been catalysts of national renewable energy infrastructure development. Yet NASA was a latecomer in the concerted practical use of solar and wind power–beaten to it by none other than the US military!–and the deployment of LEED certified facilities when it probably could have been the original authors of that LEED criteria.

Perhaps the reason for this missed opportunity is that space agencies are ultimately creatures of politics and one of the great problems we face today across the developed nations is the irrational politicization of energy technology. Through systematic political corruption by vested interests, the choice of energy technology has became a matter of political ideology. This is patently absurd. It’s like an arbitrary religious taboo against certain foods in the midst of a famine. And because space agencies are compelled to pander to the vanities of political parties, it simply never had the option to employ and promote technologies that became characterized as politically controversial. The blunder here has been in not recognizing that a public mandate is far more important to space agencies than mutual support from self-interested political leaders. With that mandate, the flow of influence is reversed and the government compelled to follow their lead. Administrators have become too comfortable playing the game by politics’ rules.

Oddly enough, space agencies have at times tried–half-heartedly and thus futilely–to promote renewable energy in a space industry context in the form of the Space Solar Power that was of much interest in the late 1970s and has seen some revival in recent years. Space Solar Power was the key rationalization for the concept of large orbital space colonies that emerged from the legendary ’77 Summer Study and epitomized in books such as Girard O’Neill’s High Frontier. The space colony was the home to the orbital workforce that would produce this vast space solar power infrastructure from lunar-sourced materials. This was a vision that briefly enjoyed popular interest world-wide–to the point where it actually became the subject of theme park attractions like Disney’s Horizons–and which space agencies totally failed to capitalize on as they continued to transform from space programs into space bureaucracies.

Emerging at the height of the ‘70s Energy Crisis, the concept of space solar power should have put space squarely into the middle of mainstream cultural concerns were it not for the problem of government politicization of energy and, even more peculiar, environmentalism’s very negative response to the concept persisting to this day. There are many open technical questions about the viability of Space Solar Power. This author is himself quite skeptical of it based on the question of power delivery beam density and rectenna area and the practical cost-performance comparison to terrestrial solar power. There is, to date, a lot of hand-waving. But this is not why environmentalism was so cold to this concept. It rejected it because the basic idea of a super-power nation and its corporate military industrial complex deploying a gigantic concentrated energy infrastructure perpetuates a model of energy economy hegemony that environmentalism’s embrace of renewables was intended to stand against. In other words, environmentalists are generally only interested in alternative energy technology that can be deployed in small scales–put on the roof of your off-grid cabin in the wilderness as a symbol of grass-roots protest against corporate fossil fuel hegemony. The problem, as environmentalism perceives it, is not just that fossil fuels pollute but that the concentrated economic power created by concentrated energy production hegemonies is a key cause of class exploitation and a root source of the inherent unsustainability in our entire industrial infrastructure. This sort of grass-roots independent energy protest was originally a necessity with wind and solar because of the refusal of industry to seriously pursue renewables development at any significant scale, forcing proponents to small independent deployment and technology demonstration and a bottom-up cultivation of demand for the technology, though the down-side of this is that it further reinforces the politicization of energy technology. For this same reason environmentalism has ignored or lambasted many other promising renewable energy technologies that happen to have large minimum economies of scale, such as OTEC. This is an issue many current proponents of Space Solar Power in the space advocacy community still fail to comprehend.

Had we put this in a different context, the outcome might have been much different. There has long been an opportunity here to frame space development in the context of a general and direct improvement of terrestrial life. An option to say–and demonstrate–that the pursuit of sustained habitation in space is simultaneously the pursuit of a better, more sustainable, life on Earth, the fulcrum of that proposition being the nature of the technologies we must develop and employ in order to live in space. Technologies the public has never been presented with much illustration/demonstration of. The lifestyle of the inhabitant of space is the most ‘green’ lifestyle one might imagine because the essential process of space habitation revolves around the cultivation of garden habitats of various kinds, life support systems that mimic the cycles of the terrestrial biome, renewable energy systems at many scales, and sophisticated miniaturized industrial technology that, deployed on Earth, would promote industrial–and incidentally economic–demassification. Space development IS a progressive movement!

This is also very important in a commercial context because it is just as critically necessary to relate commercial space activity to things that matter to the public as that is for government space activity. In fact, even more so in the sense that, in order for commercial space to be viable, it must produce products and services that relate to the needs and desires of a mainstream public. There isn’t much money to be made at the top of the pyramid. There is more money in CocaCola than in champagne. This is why a systematic pursuit of new space applications is very critical to any potential growth in commercial space–and right now that doesn’t exist.

This author is going to go out on a limb with a very controversial observation; one of the key hindrances to future economic growth in the New Space community is it’s inability to culturally align to the interest of the public and actually function as a community. It is making exactly the same mistake national space agencies have been making for decades. This at least partly relates to its association with extremist Libertarianism, a preponderance of Global Warming deniers, an indifference to environmental and social concerns, and most importantly, an inability to systematically pursue new market-relevant space applications as a cooperative community with coherent shared objectives. This is not just a matter of politics and philosophy. This is a matter of the bottom-line economic potential for the industry. The ability of the industry to realize growth and value. It’s ability to make money. If you can’t relate to the mainstream society, you don’t matter.

Right now commercial space desperately needs the kind of cross-industry coherence and cooperation that typified the computer industry of the ‘80s and ‘90s. Just like the computer, our goals in space are too complicated and technically challenging. No one company can do all we need to do in space any more than one company was capable of realizing the personal computer as we know it today. There are not enough ways to make money in space, either existing or proposed. The cooperative addressing of that issue should be the number one concern of commercial space developers. And, again, the concept of space habitation as a general goal is a potential catalyst for this focus. It reduces space activity to a specific logistical context, a specific spectrum of industrial capabilities, which can result in the identification and realization of specific products and services for the terrestrial market. It’s not all about how we get out there. It’s not about CATS. As long as there is no such thing as a generic launch capability, CATS only has any meaning in the context of specific applications. Pursuing launch capability in the absence of application development is nonsense. What ultimately matters is WHY we go out there. That’s what defines the market. We don’t have enough answers to that question.

Making it Matter:

Lets reiterate a key point; the pursuit of the means to live in space essentially means the development of technology to sustainably go from dirt, rocks, and sunlight to a middle-class standard of living using systems on the scale of home appliances. If we understand the full ramifications of this statement we see a great potential at-hand for the re-establishment of a sustainable cultural relevance for space. With this concept we can make space matter as it has never mattered to the global society before, in a very direct way that impacts every person’s life and the future of life on Earth in general. As pointed out, what would such capability not impact? What would it not improve? The public has always understood space as a place we intend to go and live. It’s space agencies’ and space industry’s inability to make sense of, and relate to, that understanding that has been its undoing. It’s not the public that’s been distracted. It’s the space community.

There are as many ways to help another human being as there are people in need of help. For some, the urgent need is as basic as food and water. For others, it is an opportunity to develop a talent, realize an idea, and reach one’s full potential. Helping people get what they need most in life is at the heart of successful philanthropy.

However, you can’t simply give money away without thinking deeply about how and where the money will go and why you’re doing the giving. You need to approach philanthropy in a strategic and systematic way—just as an entrepreneur approaches a new venture. That’s the only way to make a self-sustaining difference in the world. That being said, here are five key ways to achieve sustainable success with your philanthropic efforts.

1. Open a Door
Helping people boost themselves out of poverty is the best way to make a lasting positive difference in a person’s life. A new skill, an introduction, an education—these gifts open doors that would otherwise remain closed. A promising beneficiary will walk through that door and create opportunities for others.

2. Define Your Passion
To have enduring impact, your philanthropic efforts should reflect the causes you are most passionate about. For me, one of those things is education: A good education is the most valuable thing you can give another person. My own philanthropic efforts have always included an educational element, whether it’s expanding opportunities to educate a promising mind or extending the brain’s ability to learn. If you follow your own passions, you’ll increase exponentially your chances of sustainable success.

3. Seek Out Inspiration
To truly change the world, you need to inspire—and be inspired by—others. I’ve found many people who share my interest in neuroscience—brilliant people like V.S. Ramachandran, and David Eagleman. They inspire me to learn more, do more, and raise my standards higher. That, in turn, inspires those I work with to raise their game. Having someone you can talk to and work with makes the job of changing the world less daunting, builds deep trust, and sparks vital creativity.

4. Measure Your Impact
You’re more likely to achieve success if you can define ahead of time what form that success will take and track progress toward your goal. Set milestones along the way so you can adjust your approach and add more resources, if necessary. Simple metrics can be a powerful tool to engage people’s competitive spirit and harness it for a good cause.

This approach is what the X Prize Foundation has done in the nonprofit science field, from genomics to space exploration—it defines the goal, sets the parameters, and measures the results. And at the end there is a payoff: a cash prize for the innovators and a new body of human knowledge for the rest of us who are the true winners.

5. Think Like an Entrepreneur
None of the previous points will create a sustainable philanthropic effort unless you are constantly looking for newer and better ways to make a meaningful difference. That means looking at the world and living life as a philanthropic entrepreneur.

For example, Kairos Society, (disclosure: my son, Ankur Jain, founded the organization and I’m a supporter), is based on the belief that the key to improving our world lies in giving the next generation of leaders different opportunities to develop globally impactful innovations. Kairos brings promising young people together with successful business and political leaders from around the world to create sustainable solutions to the world’s most pressing problems.

Continuing to pass down enthusiasm for philanthropy provides chances and opportunities to the people who need it most. Growing up in India, I knew all I needed to change the world was one good opportunity, and I prepared myself for it. When that opportunity came—in the form of the chance to earn an engineering degree—I was ready. With sustainable philanthropy, we can make sure that these chances for success can be grasped by the next generation. This is philanthropy that is truly sustainable.

Follow Naveen Jain at Twitter

Visit Naveen Jain on Google Plus

Common wisdom is that great companies are built by business leaders who out-vision and out-innovate their competitors. However, the truth is that groundbreaking businesses tend to come from entrepreneurs who were smart enough to out-execute everyone else in their space – which means getting products out there and growing a loyal customer base, instead of engineering a product until it’s supposedly perfect.

Microsoft is a great example of company that has succeeded by execution. They’ve rarely been first to market with any of their products, but they’ve successfully brought them to market, figured out how to improve them, and introduce them again and again. This is the approach that puts you in the Fortune 500.

Why do entrepreneurs believe so fervently in the myth that they need to be first to market with a never-before-seen innovation? Because that’s what they’re told in business school. The problem with this piece of wisdom is that it encourages business leaders to wait until the mythical breakthrough business idea is fully formed.

This myth is fed by the public perception of groundbreaking companies as having come out of nowhere to rock the world. But companies like Facebook rarely, if ever, spring into being with no antecedents: MySpace and Friendster were in the market first, but Facebook did social networking better than anyone else had done before. Google wasn’t the first search engine ever; AltaVista probably deserves that title. But Google advanced the search experience to the point that we all believe they were the breakthrough innovator.

The point I’m making here is that you don’t need to have the breakthrough vision to launch your company – you need to have breakthrough execution. Launch your company even if your concept is similar to someone else’s idea, and figure how you will change the business model.

When you stall your entry into the market, you run the risk of getting outrun by competition – who’ll have gathered valuable on-the-ground information and solved problems before you’ve even planned your launch party. At a certain point, the ecosystem around your market will have become so strong that consumers will not be willing to accept a new entry. For example, anyone who launches a Facebook-style social network right now will have to hope that people are willing to totally rebuild their friend networks from the ground up.

On the other hand, if you can tweak this idea for a new market – for instance, a social network that specifically serves the healthcare community – you can launch without an entirely new concept. Or you can go to a locale where you’re not first in the market, but where there is greater potential to become a player.

In other words, you can be first to market in Seattle with widget XYZ, where there’s only a moderate interest and market potential for your product. Or you can be tenth to market in Tulsa where there’s a far greater need for widget XYZ, giving you plenty of room to gain customer share. Here’s how to position yourself for entrepreneurial success without playing the waiting game.

Follow your heart – but use your head. As an entrepreneur, you should always develop businesses that you are passionate about, since that enthusiasm will keep you pushing ahead when times are tough. But that doesn’t mean you can’t think rationally about how to apply what a competitor is doing to a different market segment or locale.

Listen to the market, and tweak as needed. The reason for launching sooner rather than later is to gather feedback from initial customers, so that you can redesign or retool as needed. Without this early feedback, you can only guess as to what customers are willing to pay for.

Don’t wallow in brainstorming. Time spent fiddling with a business plan or filling up whiteboards with ideas is time that you could spend actually launching your business and seeing if the idea floats. If it’s real, you get solid feedback, instead of the imaginary “what if” scenarios you dream up in a conference room.

Launch early enough that you’re partially embarrassed by your first product release. Entrepreneurs are likely to be somewhat off-base about their first launch and what features customers really want, but they won’t make a product better until people are actually using it. LinkedIn founder Reid Hoffman says that his co-founders wanted to delay launch until they introduced the professional social network’s “contact finder” feature, but it turns out it wasn’t necessary — eight years later, LinkedIn still hasn’t added that feature.

Be your own worst nightmare. Once you do have that toehold in the market, ask yourself how you would outflank your company if you were a competitor. Constantly out-innovate yourself, and determine how to make your product offerings obsolete with each iteration.

Follow Naveen Jain on Twitter: www.twitter.com/Naveen_Jain_CEO