Analytics has played a significant role in the fight against COVID-19. Would we be as far along in the battle without it?
The COVID-19 pandemic has changed many things in business, producing a new normal that all of us now operate in—and analytics is no exception.
“As companies adapt to the new normal created by COVID, one of the primary questions we’re asked in analytics is how to retrain artificial intelligence (AI) models with a more diverse data set,” said David Tareen, director of AI and analytics at SAS.
Dr. Hans Recknagel, who led the field and genome research during his Ph.D. and postdoctoral research, said: This was fascinating research, not least because in this species of lizard egg-laying populations still occur and interbreed with live-bearing ones.
Scientists studying the evolution of birth in lizards, from egg-laying to live births, have pinpointed the evolutionary genes from which the species is evolving to ‘build’ a new mode of reproduction.
The study—led by the University of Glasgow and published in Nature Ecology and Evolution —found that a significantly similar amount of the same genes involved in the pregnancy of lizards were shared with other mammals and live-bearing vertebrates.
Evolving from egg-laying to live birth—also known as viviparity—is a major evolutionary step; however, it is almost impossible to study the genes that lead to such major changes because when animals have evolved live-birth it was usually in the distant past.
A FIVE-DAY COURSE of molnupiravir, the new medicine being hailed as a “huge advance” in the treatment of Covid-19, costs $17.74 to produce, according to a report (pdf) issued last week by drug pricing experts at the Harvard School of Public Health and King’s College Hospital in London. Merck is charging the U.S. government $712 for the same amount of medicine, or 40 times the price. (taxpayer funded mind you)
The Covid-19 treatment molnupiravir was developed using funding from the National Institutes of Health and the Department of Defense.
Scientists also analysed microbial genetic material from the stool of men with prostate cancer and identified a specific bacterium – Ruminococcus – that may play a major role in the development of resistance. In contrast, the bacterium Prevotella stercorea was associated with favourable clinical outcomes.
Image: Section of a mouse gut. Credit: Kevin Mackenzie, University of Aberdeen.
Common gut bacteria can fuel the growth of prostate cancers and allow them to evade the effects of treatment, a new study finds.
Scientists revealed how gut bacteria contribute to the progression of advanced prostate cancers and their resistance to hormone therapy – by providing an alternative source of growth-promoting androgens, or male hormones.
Specialized cells that conduct electricity to keep the heart beating have a previously unrecognized ability to regenerate in the days after birth, a new study in mice by UT Southwestern researchers suggests. The finding, published online in the Journal of Clinical Investigation, could eventually lead to treatments for heart rhythm disorders that avoid the need for invasive pacemakers or drugs by instead encouraging the heart to heal itself.
“Patients with arrhythmias don’t have a lot of great options,” said study leader Nikhil V. Munshi, M.D., Ph.D., a cardiologist and Associate Professor of Internal Medicine, Molecular Biology, and in the Eugene McDermott Center for Human Growth and Development. “Our findings suggest that someday we may be able to elicit regeneration from the heart itself to treat these conditions.”
Dr. Munshi studies the cardiac conduction system, an interconnected system of specialized heart muscle cells that generate electrical impulses and transmit these impulses to make the heart beat. Although studies have shown that nonconducting heart muscle cells have some regenerative capacity for a limited time after birth—with many discoveries in this field led by UTSW scientists—conducting cells called nodal cells were largely thought to lose this ability during the fetal period.
It probably didn’t feel like much, but that simple kind of motion required the concerted effort of millions of different neurons in several regions of your brain, followed by signals sent at 200 mph from your brain to your spinal cord and then to the muscles that contracted to move your arm.
At the cellular level, that quick motion is a highly complicated process and, like most things that involve the human brain, scientists don’t fully understand how it all comes together.
Now, for the first time, the neurons and other cells involved in a region of the human, mouse and monkey brains that controls movement have been mapped in exquisite detail. Its creators, a large consortium of neuroscientists brought together by the National Institutes of Health’s Brain Research Through Advancing Innovative Neurotechnologies® (BRAIN) Initiative, say this brain atlas will pave the way for mapping the entire mammalian brain as well as better understanding mysterious brain diseases — including those that attack the neurons that control movement, like amyotrophic lateral sclerosis, or ALS.
DNA contains the genetic information that influences everything from eye color to illness and disorder susceptibility. Genes, which are around 20,000 pieces of DNA in the human body, perform various vital tasks in our cells. Despite this, these genes comprise up less than 2% of the genome. The remaining base pairs in the genome are referred to as “non-coding.” They include less well-understood instructions on when and where genes should be created or expressed in the human body.
DeepMind, in collaboration with their Alphabet colleagues at Calico, introduces Enformer, a neural network architecture that accurately predicts gene expression from DNA sequences.
Earlier studies on gene expression used convolutional neural networks as key building blocks. However, their accuracy and usefulness have been hampered by problems in modeling the influence of distal enhancers on gene expression. The proposed new method is based on Basenji2, a program that can predict regulatory activity from DNA sequences of up to 40,000 base pairs.
In January 2,020 at the event where General Motors automated driving division Cruise took the wraps off the Origin robotaxi, a slide briefly appeared in the presentation showing a version of the vehicle for package deliveries. Today during the General Motors investor day, Cruise CEO Dan Ammann provided more details about the company’s business model and revenue opportunities and showed both a delivery module and a wheelchair accessible version.
Cruise has been providing automated deliveries in partnership with Walmart WMT +0.7% in the Phoenix area since late 2020. Throughout much of last year during the worst early phases of the pandemic in the San Francisco area, Cruise vehicles were used to provide more than 50,000 food deliveries to medical personnel and those in need. Those efforts have all utilized the current test fleet of Chevrolet Bolts which are not optimized for goods delivery.
There’s a lot of excitement at the intersection of artificial intelligence and health care. AI has already been used to improve disease treatment and detection, discover promising new drugs, identify links between genes and diseases, and more.
By analyzing large datasets and finding patterns, virtually any new algorithm has the potential to help patients — AI researchers just need access to the right data to train and test those algorithms. Hospitals, understandably, are hesitant to share sensitive patient information with research teams. When they do share data, it’s difficult to verify that researchers are only using the data they need and deleting it after they’re done.
Secure AI Labs (SAIL) is addressing those problems with a technology that lets AI algorithms run on encrypted datasets that never leave the data owner’s system. Health care organizations can control how their datasets are used, while researchers can protect the confidentiality of their models and search queries. Neither party needs to see the data or the model to collaborate.