Toggle light / dark theme

Circa 2020


TOKYO — As scientists the world over scramble to develop a vaccine for the coronavirus, Kyushu University professor Takahiro Kusakabe and his team are working to develop a unique vaccine using silkworms.

In his project, each of the worms is a factory that manufactures a type of protein to serve as the key material for vaccine production. Kusakabe said it is possible to create an oral vaccine and aims to start clinical tests on humans in 2021.

In a building on the Kyushu University campus in Fukuoka, in western Japan, “we have about 250,000 silkworms in about 500 different phylogenies (family lines),” Kusakabe said.

AI.Reverie offered APIs and a platform that procedurally generated fully annotated synthetic videos and images for AI systems. Synthetic data, which is often used in tandem with real-world data to develop and test AI algorithms, has come into vogue as companies embrace digital transformation during the pandemic. In a recent survey of executives, 89% of respondents said synthetic data will be essential to staying competitive. And according to Gartner, by 2,030 synthetic data will overshadow real data in AI models.

Full Story:


Facebook has quietly acquired AI.Reverie, a New York-based startup creating synthetic data to train machine learning models, VentureBeat has learned.

A Japanese startup at CES is claiming to have solved one of the biggest problems in medical technology: Noninvasive continuous glucose monitoring. Quantum Operation Inc, exhibiting at the virtual show, says that its prototype wearable can accurately measure blood sugar from the wrist. Looking like a knock-off Apple Watch, the prototype crams in a small spectrometer which is used to scan the blood to measure for glucose. Quantum’s pitch adds that the watch is also capable of reading other vital signs, including heart rate and ECG.

The company says that its secret sauce is in its patented spectroscopy materials which are built into the watch and its band. To use it, the wearer simply needs to slide the watch on and activate the monitoring from the menu, and after around 20 seconds, the data is displayed. Quantum says that it expects to sell its hardware to insurers and healthcare providers, as well as building a big data platform to collect and examine the vast trove of information generated by patients wearing the device.

Quantum Operation supplied a sampling of its data compared to that made by a commercial monitor, the FreeStyle Libre. And, at this point, there does seem to be a noticeable amount of variation between the wearable and the Libre. That, for now, may be a deal breaker for those who rely upon accurate blood glucose readings to determine their insulin dosage.

Aspirin is a blood thinner & can help head off heart attacks and strokes by preventing clots from forming in the blood vessels that lead to the heart or brain.


The U.S. Preventive Services Task Force’s proposed changes to recommendations for using low-dose aspirin to prevent a first heart attack or stroke closely align with guidelines from the American College of Cardiology and the American Heart Association.

Interestingly, the nuclear protein histone H4 was detected, which is reminiscent of the retention of nuclear components in the remains (Fig. 2c). Search against the database of all mammalian species identified other nuclear proteins, such as histones, histone chaperones, proteins implicated in mRNA processing or transport and nuclear membrane proteins (Supplementary Table S2). In addition, we identified two well-characterised epigenetic modifications on histone molecules, methylation of H3K79 and H4K20 (Supplementary Fig. S2A and B), which are involved in transcriptional regulation and genome maintenance18,19. Our high-sensitive proteomic analysis suggests that the remains retain nuclear components.

These findings motivated us to seek cell nuclei from the muscle remains. Although DAPI-positive and autofluorescence-negative nucleus-like structures were rarely found (Supplementary Figs S3 and S4), we chose the autofluorescence-negative structures for the subsequent live-cell imaging of nuclear-transferred embryos since autofluorescence disturbs accurate tracing of fluorescent-tagged proteins. In total, 88 nucleus-like structures were collected from 273.5 mg mammoth tissue in 5 independent experiments (Supplementary Table S7). Our immunostaining protocol developed for single suspended cells from remains (Supplementary Fig. S5) revealed that these structures were positive for lamin B2 and histone H3, both of which were identified by mass spectrometry (Fig. 3a and Supplementary Fig. S6), suggesting that cell nuclei are, at least partially, sustained even in over a 28,000 year period.

Circa 2017


Call it worm power.

Takaaki Hirotsu is trying to harness the power of the nematode worm — a tiny, transparent roundworm that lives in soil or water — to detect all forms of cancer at their earliest stages.

In a paper published in Scientific Reports, academics at the University of Surrey have discovered that biological cells generate an electric field voltage that appears outside and not just within, meaning each cell acts as a tiny electrode. Since this voltage impacts how cells interact with their environment, including the way cells stick to one another, this has significant potential implications for future medical treatments.

Since the 1790s, scientists have known that electricity plays a role in the function of life, with the discovery in the 1940s that every cell contains a that controls many of its functions. This is particularly the case in muscle and nerve cells but has also been shown to play an important role in diseases such as cancer.

However, until now, this voltage has always been understood to be contained within the cell. Through intricate experiments with , the Surrey-led research team has shown that the voltage appears outside the cell as well. This means that cells effectively act as tiny transmitters, electrically changing the environment around them. Similar results in other types of could play a significant role in determining new types of medical treatment.

2021 is only halfway complete, and we cannot yet be said to have defeated the pandemic, but yet at the same time, the travel and tourism industry is said to be poised for a pretty rapid boom. In many ways and places, the recovery has already begun.

A live Globaldata poll showed that people are desperate to enjoy travels and trips again with a majority of them opting for longer trips than before. 26% of their respondents showed a desire to enjoy trips that spanned a minimum of 10 nights. As lockdowns and travel restrictions continue to be eased and countries continue to open up, we will likely see a surge in new tourists and travelers.

Jason Fong, a veteran of the industry, is the brain behind the Boss of Bali brand, a brand that has garnered over 2 million followers on Instagram. Fong shared his knowledge of all things tourism and how he has used his platform to promote the evolution of travel and tourism more sustainably.

By using a compound derived from a Himalayan fungus and used for centuries in Chinese medicine as a jumping off point, scientists have developed a new chemotherapy drug with powerful anti-cancer effects. Doing so involved chemically altering the compound to better infiltrate cancerous cells, which proved to boost its potency by up to 40 times.