Toggle light / dark theme

The first artificial Lab-Grown Meats have recently gotten into stores and markets for everyone to buy and eat. But until now, those meats were largely just chicken nuggets or similar types of meat. But with Future Meat Technologies’ latest crazy invention, this has changed. They managed to create a system that actually involves Artificial Intelligence, which grows almost 5,000 fully-fledged hamburgers a day without the environmental impact or regular food and meat.

Cultured meat is meat produced by in vitro cell cultures of animal cells (as opposed to meat obtained from animals). It is a form of cellular agriculture.
Cultured meat is produced using many of the same tissue engineering techniques traditionally used in regenerative medicines. It’s also occasionally called lab grown meat.

Every day is a day closer to the Technological Singularity. Experience Robots learning to walk & think, humans flying to Mars and us finally merging with technology itself. And as all of that happens, we at AI News cover the absolute cutting edge best technology inventions of Humanity.

If you enjoyed this video, please consider rating this video and subscribing to our channel for more frequent uploads. Thank you! smile

TIMESTAMPS:
00:00 The Best Burger of the Future.
01:29 History of Future Meat Technologies.
02:53 How Cultured Meat is made.
04:37 Where you can buy cultured Meat.
05:52 Advantages of Cultured Meat.
07:44 Last Words.

#weird #food #cultured

It’s the dog days of summer. You bite down on a plump, chilled orange. Citrus juice explodes in your mouth in a refreshing, tingling burst. Ahh.

And congratulations—you’ve just been vaccinated for the latest virus.

That’s one of the goals of molecular farming, a vision to have plants synthesize medications and vaccines. Using genetic engineering and synthetic biology, scientists can introduce brand new biochemical pathways into plant cells—or even whole plants—essentially turning them into single-use bioreactors.

“De-Extinction” Biotechnology & Conservation Biology — Ben Novak, Lead Scientist Revive & Restore


Ben Novak is Lead Scientist, at Revive & Restore (https://reviverestore.org/), a California-based non-profit that works to bring biotechnology to conservation biology with the mission to enhance biodiversity through the genetic rescue of endangered and extinct animals (https://reviverestore.org/what-we-do/ted-talk/).

Ben collaboratively pioneers new tools for genetic rescue and de-extinction, helps shape the genetic rescue efforts of Revive & Restore, and leads its flagship project, The Great Passenger Pigeon Comeback, working with collaborators and partners to restore the ecology of the Passenger Pigeon to the eastern North American forests. Ben uses his training in ecology and ancient-DNA lab work to contribute, hands-on, to the sequencing of the extinct Passenger Pigeon genome and to study important aspects of its natural history (https://www.youtube.com/watch?v=pK2UlLsHkus&t=1s).

Ben’s mission in leading the Great Passenger Pigeon Comeback is to set the standard for de-extinction protocols and considerations in the lab and field. His 2018 review article, “De-extinction,” in the journal Genes, helped to define this new term. More recently, his treatment, “Building Ethical De-Extinction Programs—Considerations of Animal Welfare in Genetic Rescue” was published in December 2019 in The Routledge Handbook of Animal Ethics: 1st Edition.

Ben’s work at Revive & Restore also includes extensive education and outreach, the co-convening of seminal workshops, and helping to develop the Avian and Black-footed Ferret Genetic Rescue programs included in the Revive & Restore Catalyst Science Fund.

Ben graduated from Montana State University studying Ecology and Evolution. He later trained in Paleogenomics at the McMaster University Ancient DNA Centre in Ontario. This is where he began his study of passenger pigeon DNA, which then contributed to his Master’s thesis in Ecology and Evolutionary Biology at the University of California Santa Cruz. This work also formed the foundational science for de-extinction.

Ben also worked at the Australian Animal Health Laboratory–CSIRO (Commonwealth Scientific and Industrial Research Organisation) to advance genetic engineering protocols for the pigeon.

A new type of magnetic brain stimulation brought rapid remission to almost 80% of participants with severe depression in a study conducted at the Stanford University School of Medicine.

The , known as Stanford accelerated intelligent neuromodulation therapy (SAINT) or simply Stanford neuromodulation therapy, is an intensive, individualized form of transcranial magnetic stimulation. In the study, remission typically occurred within days and lasted months. The only side effects were temporary fatigue and headaches.

“It works well, it works quickly and it’s noninvasive,” said Nolan Williams, MD, an assistant professor of psychiatry and behavioral sciences. “It could be a game changer.” Williams is the senior author of the study, which was published Oct. 29 in the American Journal of Psychiatry.

Conception is starting with blood cells from female donors and trying to transform these into the first “proof-of-concept human egg” made in the lab. The company hasn’t done it yet—nor has anyone else. There are still scientific puzzles to overcome, but Krisiloff sent out an email to supporters earlier this year saying his startup might be “the first in the world to accomplish this goal in the not-too-distant future.” It says that artificial eggs “could become one of the most important technologies ever created.”

That’s no exaggeration. If scientists can generate supplies of eggs, it would break the rules of reproduction as we know them. Women without ovaries—for example, because of cancer or surgery—might be able to have biologically related children. What’s more, lab-made eggs would cancel the age limits on female fertility, allowing women to have related babies at 50 60, or even beyond.

With the maiden orbital flight of Starship approaching, Orbital Launch Pad A in Starbase, Texas, is being built up to launch readiness. Over a year of construction has brought the complex’s various elements to the verge of launching the most powerful rocket in history.

Assembly Timeline

SpaceX started construction of the orbital launch pad on June 22 2020, when teams began to install the concrete rebar for the six pillars of the orbital launch mount. After building up steel rebar for reinforcement, a steel cylinder was sleeved over the rebar and each pillar was filled with concrete, covered, then left to cure.

For the first time, researchers have used human data to quantify the speed of different processes that lead to Alzheimer’s disease and found that it develops in a very different way than previously thought. Their results could have important implications for the development of potential treatments.

The international team, led by the University of Cambridge, found that instead of starting from a single point in the brain and initiating a chain reaction that leads to the death of brain cells, Alzheimer’s disease reaches different regions of the brain early. How quickly the disease kills cells in these regions, through the production of toxic protein clusters, limits how quickly the disease progresses overall.

The researchers used post-mortem brain samples from Alzheimer’s patients, as well as PET scans from living patients, who ranged from those with mild cognitive impairment to those with late-stage Alzheimer’s disease, to track the aggregation of tau, one of two key proteins implicated in the condition.

Researchers at MIT and Harvard University have designed a way to selectively turn on gene expression in target cells, including human cells. Their technology can detect specific mRNA sequences (represented in the center of the illustration), which triggers production of a specific protein (bottom right). Credit: Jose-Luis Olivares, MIT, with figures from iStockphoto.

“This brings new control circuitry to the emerging field of RNA therapeutics, opening up the next generation of RNA therapeutics that could be designed to only turn on in a cell-specific or tissue-specific way,” says James Collins, the Termeer Professor of Medical Engineering and Science in MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering and the senior author of the study.

This highly targeted approach, which is based on a genetic element used by viruses to control gene translation in host cells, could help to avoid some of the side effects of therapies that affect the entire body, the researchers say.

A commonly available oral diuretic pill approved by the U.S. Food and Drug Administration may be a potential candidate for an Alzheimer’s disease treatment for those who are at genetic risk, according to findings published in Nature Aging. The research included analysis showing that those who took bumetanide — a commonly used and potent diuretic — had a significantly lower prevalence of Alzheimer’s disease compared to those not taking the drug. The study, funded by the National Institute on Aging (NIA), part of the National Institutes of Health, advances a precision medicine approach for individuals at greater risk of the disease because of their genetic makeup.

The research team analyzed information in databases of brain tissue samples and FDA-approved drugs, performed mouse and human cell experiments, and explored human population studies to identify bumetanide as a leading drug candidate that may potentially be repurposed to treat Alzheimer’s.

“Though further tests and clinical trials are needed, this research underscores the value of big data-driven tactics combined with more traditional scientific approaches to identify existing FDA-approved drugs as candidates for drug repurposing to treat Alzheimer’s disease,” said NIA Director Richard J. Hodes, M.D.