Toggle light / dark theme

CRISPR may be revolutionary; however, it’s not nearly as easy as it’s made out to be. But thanks to this company, individuals can alter the source code of life without ever needing to enter a lab.

A new genome editing technique is allowing us to alter DNA—the source code of life—with unprecedented precision. It is known as CRISPR, and with it, we can target and change a gene from any cell of any species without interfering with any other genes. If that’s not enough, we are able to edit these genes at just a fraction of the cost of previous methods.

So not only is this technique remarkably precise, it’s also remarkably cheap.

Read more

It won’t be long now before cancer is nothing but a terrible, terrible memory.

Never soon enough, though.


Recent advances in an immune-cell cancer treatment called immunotherapy* (using engineered antibodies that can target specific molecules on cancer cells) are producing dramatic results for people with cancer, according to Stanley Riddell, MD, an immunotherapy researcher and oncologist at Seattle’s Fred Hutchinson Cancer Research Center.**

Riddell and his colleagues have refined new methods of engineering a patient’s own immune cells to better target and kill cancer cells while decreasing side effects. In laboratory and clinical trials, the researchers are seeing “dramatic responses” in patients with tumors that are resistant to conventional high-dose chemotherapy, “providing new hope for patients with many different kinds of malignancies,” Riddell said.

Read more

The MDI Biological Laboratory has announced new discoveries about the mechanisms underlying the regeneration of heart tissue by Assistant Professor Voot P. Yin, Ph.D., which raise hope that drugs can be identified to help the body grow muscle cells and remove scar tissue, important steps in the regeneration of heart tissue.

Heart disease is a leading cause of death in the western world. Yin is using zebrafish to study the regeneration of tissue because of the amazing capacity of these common aquarium fish to regenerate the form and function of almost any body part, including heart, bone, skin and blood vessels, regardless of their age. In contrast, the adult mammalian cardiovascular system has limited regenerative capacity.

“Although zebrafish look quite different from humans, they share an astonishing 70 percent of their genetic material with humans, including genes important for the formation of new heart muscle,” Yin said. “These genes are conserved in humans and other mammals, but their activity is regulated differently after an injury like a .”

Read more

Allen Institute working with Baylor on reconstructing neuronal connections.


The Intelligence Advanced Research Projects Activity (IARPA) has awarded an $18.7 million contract to the Allen Institute for Brain Science, as part of a larger project with Baylor College of Medicine and Princeton University, to create the largest ever roadmap to understand how the function of networks in the brain’s cortex relates to the underlying connections of its individual neurons.

The project is part of the Machine Intelligence from Cortical Networks (MICrONS) program, which seeks to revolutionize machine learning by reverse-engineering the algorithms of the brain.

“This effort will be the first time that we can physically look at more than a thousand connections between neurons in a single cortical network and understand how those connections might allow the network to perform functions, like process visual information or store memories,” says R. Clay Reid, Ph.D., Senior Investigator at the Allen Institute for Brain Science, Principal Investigator on the project.

Read more

Another data scientist with pragmatic thinking which is badly needed today. Keeping it real with Una-May O’Reilly.


Mumbai: Una-May O’Reilly, principal research scientist at Anyscale Learning For All (ALFA) group at the Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory, has expertise in scalable machine learning, evolutionary algorithms, and frameworks for large-scale, automated knowledge mining, prediction and analytics. O’Reilly is one of the keynote speakers at the two-day EmTech India 2016 event, to be held in New Delhi on 18 March.

In an email interview, she spoke, among other things, about how machine learning underpins data-driven artificial intelligence (AI), giving the ability to predict complex events from predictive cues within streams of data. Edited excerpts:

When you say that the ALFA group aims at solving the most challenging Big Data problems—questions that go beyond the scope of typical analytics—what do you exactly mean?

Typical analytics visualize and retrieve direct information in the data. This can be very helpful. Visualizations allow one to discern relationships and correlations, for example. Graphs and charts plotting trends and comparing segments are informative. Beyond its value for typical analytics, one should also be aware that the data has latent (that is, hidden) predictive power. By using historical examples, machine learning makes it possible to build predictive models from data. What segments are likely to spend next month? Which students are likely to drop out? Which patient may suffer an acute health episode? Predictive models of this sort rely upon historical data and are vital. Predictive analytics is new, exciting and what my group aims to enable technologically.

Read more