Toggle light / dark theme

Researchers have synthesised a mirror image enzyme that allowed them to constructing the longest ever strand of mirror DNA. The team also demonstrated how this L-DNA could be used as a robust biorthogonal information repository.

Louis Pasteur first proposed the idea of a mirror image version of biological systems more than 160 years ago, following the discovery of molecular chirality. All natural DNA contains the D form of the chiral sugar deoxyribose, but it may be possible for a mirror system to be built using L-deoxyribose instead.

Still, the timing of this film is remarkable, not only because the pandemic slowed us all down, but because we do live in an aging society. We also live in a time of accelerating technological transformation and precision medicine. It is no secret that transhumanist thinking is proliferating, and not just each time a billionaire flies into space. No less than The World Economic Forum has implicitly endorsed aspects of transhumanism’s agenda under the banner of “human enhancement” and more recently via “The Great Reset.”


The new film opened last Friday.

Standing hundreds of feet above ground, wind turbines — like tall trees, buildings, and telephone poles — are easy targets for lightning. Just by virtue of their height, they will get struck.

Lightning protection systems exist for conventional wind turbine blades. But protection was needed for blades made from a new type of material—thermoplastic resin composites — and manufactured using an innovative thermal (heat-based) welding process developed by scientists at the National Renewable Energy Laboratory (NREL).

Thermoplastic materials, like plastic bottles, can be more easily recycled than the thermoset materials commonly used to make wind turbine blades today. While thermoset materials need to be heated to cure, thermoplastics cure at room temperature, which reduces both blade manufacturing times and costs.

This image features a spectacular set of rings around a black hole, captured using NASA’s Chandra X-ray Observatory and Neil Gehrels Swift Observatory. The X-ray images of the giant rings reveal information about dust located in our galaxy, using a similar principle to the X-rays performed in doctor’s offices and airports.

Since DNMT3A increases DNA methylation, the researchers used a natural product that donates methyl groups S-adenosylmethionine (SAMe) and to activate the retinoic acid receptor they treated the animals with vitamin A. They found that combined treatment with the methyl donor SAM and retinoic acid reversed PTSD-like behaviors.


Summary: Combining two natural products that modulate the epigenome, researchers believe they have identified a feasible approach to reversing symptoms of PTSD in animal models that could be effective in humans.

Source: Bar Ilan University

Exposure to a traumatic experience can lead to post-traumatic stress disorder (PTSD), an incapacitating disorder in susceptible persons with no reliable therapy. Particularly puzzling is understanding how transient exposure to trauma creates persistent long-term suffering from PTSD and why some people are susceptible to PTSD while others that were exposed to the same trauma remain resilient.

Epigenetic modifications are chemical marks on genes that program their activity. These marks are written into DNA during fetal development to correctly program how our genes function in different organs. However, research in the last two decades has suggested that these marks could also be modulated by experiences and exposures at different point of time in life.

ADS Codex translates binary data into nucleotides that can be sequenced in molecules as files for later retrieval, bringing potential cost savings and compact ‘cold storage.’

In support of a major collaborative project to store massive amounts of data in DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Through a process known as RNA interference (RNAi), scientists have been able to modify the genetic make-up of the daddy long-legs arachnid so that its distinctive spindly limbs become twice as short.

This process – which uses a gene’s own DNA sequence and small fragments of RNA to turn the gene off – was applied to the Phalangium opilio species, one of the most common species of daddy long-legs in the world.

The result is effectively a daddy short-legs instead of a daddy long-legs. The team behind the work is hoping that the experiments can teach us more about how these elongated limbs evolved in the first place.

Gene-editing technique CRISPR may deliver new treatments for genetic diseases—and it’s already being tested on patients.


17:22 minutes.

In one of the first clinical applications of the technique, last month researchers reported in the New England Journal of Medicine that CRISPR had stopped a genetic disease called amyloidosis, which occurs when an abnormal protein accumulates in your organs. They’re not the only group moving toward using CRISPR on humans; recently, the FDA approved a human clinical trial that will use the technique to edit genes responsible for sickle cell disease.

The same process that eliminates replication errors also eliminates antiviral agents delivered by the treatments commonly used to fight other RNA viruses, such as HIV, HCV and Ebola virus, which partially explains why SARS-CoV-2 has proven so difficult to treat, Yang said.


The coronavirus that causes COVID-19 has demonstrated a stubborn ability to resist most nucleoside antiviral treatments, but a new study led by an Iowa State University scientist could help to overcome the virus’s defenses.

The study, published recently in the peer-reviewed journal Science, details the structure of a critical enzyme present in SARS-CoV-2, the coronavirus that causes COVID-19. This enzyme, known as the proofreading exoribonuclease (or ExoN), removes nucleoside antiviral medications from the virus’s RNA, rendering most nucleoside analogs-based antiviral treatments ineffective. The new study presents the atomic structures of the ExoN enzyme, which could lead to the development of new methods for deactivating the enzyme and opening the door to better treatments for patients suffering from COVID-19.

“If we could find a way to inhibit this enzyme, maybe we can achieve better results to kill the virus with existing nucleoside antiviral treatments. Understanding this structure and the molecular details of how ExoN works can help guide further development of antivirals,” said Yang Yang, lead author of the study and assistant professor in the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology at Iowa State University.