Toggle light / dark theme

Cuba on Monday became the first country in the world to vaccinate children from the age of two against Covid-19, using home-grown jabs not recognised by the World Health Organization. The communist island of 11.2 million people aims to inoculate all its children before reopening schools that have been closed for the most part since March 2020. The new school year started on Monday, but from home via television programmes, as most Cuban homes do not have internet access.


Cuba is vaccinating children from the age of two using home-grown jabs not recognised by the World Health Organization.

Fibromyalgia appears to be autoimmune, and by knowing the antibody target it should be possible to force immunotolerance, curing the disease. Thanks to the animal experiments.

Paper:
Goebel A, Krock E, Gentry C, et al.: Passive transfer of fibromyalgia symptoms from patients to mice. J Clin Invest. 2021;131(13). doi: 10.1172/JCI144201

To Sheng-Ying Pao, the power of reframing CRISPR lies in what is absolutely ordinary: paper. In CRISPaper, Pao revisited a cultural past in the ancient art of papermaking.

Over thousands of years, farmers painstakingly converted the wild rice plant into a staple crop. Today, researchers are using CRISPR to change genes to optimize grain yield. However, rice is more than food. In ancient China, it was used to make paper.

Pao took rice stalks from plants edited with CRISPR and ground the fibers into pulp. She then poured the pulp over a mesh screen. Every time she dipped the screen into water, the plant fibers would lift and resettle on top of the mesh, eventually making paper. Through the genome-edited rice plant, an ancient practice was juxtaposed with cutting-edge technology. Pao’s meditative ritual of papermaking is a counterbalance to the strangeness of the source material.
[Show ID: 37388]

CRISPaper: Understanding gene-editing through art

Home


http://www.facebook.com/UCBerkeley.
http://twitter.com/UCBerkeley.
http://instagram.com/ucberkeleyofficial.

Please Note: Knowledge about health and medicine is constantly evolving. This information may become out of date.

Brazilian researchers have found that snake venom could be used as a tool in the fight against coronavirus.

Brazilian researchers have found that a molecule in the venom of a type of snake slowed down the reproduction of coronavirus in monkey cells.

The study showed a molecule produced by the Jararacussu pit viper, one of the largest snakes in Brazil, reduced the disease’s ability to multiply by 75%.

The Viper’s venom has enough potency to kill 16 people, but the dangerous snake could potentially help scientists develop a drug to combat Coronavirus.

Please subscribe HERE http://bit.ly/1rbfUog.

#BBCNews #Coronavirus #Snake

Sugar feeding prior to having an infected blood meal could protect a mosquito’s ability to get infected and transmit arboviruses such as Zika, dengue and chikungunya, according to a new study.

The research – led by the MRC-University of Glasgow Centre for Virus Research and published in PLOS Pathogens – showed that the Aedes aegypti species of mosquito, an arbovirus vector, had enhanced immunity in the gut after feeding on sugar, which in turn protected females of the species against viral infection.

Australians with COVID-19 who are at risk of hospitalisation will now have access to an additional antibody treatment, as the Therapeutic Goods Administration (TGA) announced today it has granted provisional approval for sotrovimab to be used in Australia.

Earlier this month, the Australian Government secured an initial allocation of over 7,700 doses of the novel monoclonal antibody treatment sotrovimab and a first shipment is already in the country and ready to be deployed through the National Medical Stockpile from next week.

The sotrovimab treatment requires a single dose to be administered through an intravenous (IV) infusion in a health care facility and has been shown to reduce hospitalisation or death by 79 per cent in adults with mild to moderate COVID-19, who are at risk of developing severe COVID-19.

Donor-derived anti-CD7 chimeric antigen receptor (CAR) T-cell therapy led to complete responses in 18 of 20 patients with relapsed or refractory (r/r) T-cell acute lymphoblastic (ALL), a first-in-human clinical trial showed.

After a median follow-up of 6.3 months, 15 of the 18 responding patients remained in remission, and seven patients had undergone stem-cell transplantation (SCT). All patients developed cytokine release syndrome (CRS), which was grade 1/2 in most instances. Because the therapy involved unmanipulated T cells, a majority of patients developed graft-versus-host disease (GVHD), grade 1/2 severity in all cases. All of the patients developed severe cytopenias, which were manageable.

The results provided the basis for an ongoing phase II trial of the donor-derived anti-CD7 therapy, reported Jing Pan, MD, of the State Key Laboratory of Experimental Hematology and Beijing Boren Hospital in China, and colleagues in the Journal of Clinical Oncology.

An enzyme with an elusive role in severe inflammation may be a key mechanism driving COVID-19 severity and could provide a new therapeutic target to reduce COVID-19 mortality, according to a study published in the Journal of Clinical Investigation.

Researchers from the University of Arizona, in collaboration with Stony Brook University and Wake Forest School of Medicine, analyzed blood samples from two COVID-19 patient cohorts and found that circulation of the enzyme — secreted phospholipase A2 group IIA, or sPLA2-IIA, — may be the most important factor in predicting which patients with severe COVID-19 eventually succumb to the virus.


Researchers have identified what may be the key molecular mechanism responsible for COVID-19 mortality – an enzyme related to neurotoxins found in rattlesnake venom.