Toggle light / dark theme

We’ve been hearing and seeing plenty about augmented reality these days — from Microsoft’s HoloLens to the mysterious Google-backed startup Magic Leap — but aside from the gee-whiz factor, its benefits can sometimes feel almost as illusory as virtual images. Gaia Dempsey, managing director of DAQRI, which makes an AR-enabled smart hard hat, offers up a strong case for why augmented reality is more than just hype. In a new video for the upcoming Future of Storytelling Summit (which also produced the stunning video of animation legend Glen Keane drawing in VR), Dempsey explains how AR could fundamentally change the way we learn and experience the world. For example, it’s one thing to be told how the mechanics of a clock works in text or video, it’s an entirely different experience to be able to manipulate a moving set of clock gears in three dimensions.

Read more

https://soundcloud.com/a16z/a16z-podcast-techs-big-ideas-and-the-swallow-the-red-pill-moment-with-dan-siroker-and-marc-andreessen

“Nunes demonstrated this with a tablet in the augmented reality lab and a small 3D-printed duplicate of a piece of well hardware. The maintenance manual app used the tablet’s camera to figure out what kind of hardware it was looking at, and then was able to track the component as the tablet moved around it. The operator could look up installation procedures and see steps demonstrated in 3D on the parts each step involves, rather than having to refer to static printed diagrams.” Read more

http://memeburn.com/wp-content/uploads/2013/03/Tony-Stark.jpg

“To understand how AR wearables affect the way a typical person perceives the world, we considered various natural impairments to vision.…A poorly designed AR interface could interfere with vision to the same degree as these diseases.” Read more

lead_960

Vannevar Bush’s prediction, half a century later, rings true: “The world has arrived at an age of cheap complex devices of great reliability; and something is bound to come of it.”

Read more

Game-changing technologies can be a waste of money or a competitive advantage. It depends on the technology and the organization.

It seems like the term “game-changing” gets tossed around a lot lately. This is particularly true with respect to new technologies. But what does the term mean, what are the implications, and how can you measure it?

With regarding to what it means, I like the MacMillan dictionary definition for game-changing. It is defined as “Completely changing the way that something is done, thought about, or made.” The reason I like this definition is it captures the transformational nature of what springs to mind when I hear the term game-changing. This should be just what it says. Not just a whole new ball game, but a whole new type of game entirely.

Every industry is unique. What is a game-changer for one, might only be a minor disruption or improvement for another. For example, the internal combustion engine was a game-changer for the transportation industry. It was important, though less of a game-changer for the asphalt industry due to secondary effect of increased demand for paved roads.

Just as every industry is unique, so is every organization. In order to prosper in a dynamic environment, an organization must be able to evaluate how a particular technology will affect its strategic goals, as well as its current operations. For this to happen, an organization’s leadership must have a clear understanding of itself and the environment in which it is operating. While this seems obvious, for large complex organizations, it may not be as easy as it sounds.

In addition to organizational awareness, leadership must have the inclination and ability to run scenarios of how it the organization be affected by the candidate game-changer. These scenarios provides the ability to peek a little into the future, and enables leadership to examine different aspects of the potential game-changer’s immediate and secondary impacts.

Now there are a lot of potential game-changers out there, and it is probably not possible to run a full evaluation on all of them. Here is where an initial screening comes in useful. An initial screen might ask is it realistic, actionable, and scalable? Realistic means does it appear to be feasible from a technical and financial standpoint? Actionable means does this seem like something that can actually be produced? Scalable means will the infrastructure support rapid adoption? If a potentially transformational technology passes this initial screening, then its impact on the organization should be thoroughly evaluated.

Let’s run an example with augmented reality as the technology and a space launch services company. Despite the (temporary?) demise of Google Glass, augmented reality certainly seems to have the potential to be transformational. It literally changes how we can look at the world! Is it realistic? I would say yes, the technology is almost there, as evidenced by Google Glass and Microsoft HoloLens. Is it actionable? Again, yes. Google Glass was indeed produced. Is it scalable? The infrastructure seems available to support widespread adoption, but the market readiness is a bit of an issue. So yes, but perhaps with qualifications.

With the initial screening done, let’s look at the organizational impact. A space launch company’s leadership knows that due to the unforgiving nature of spaceflight, reliability has to be high. They also know that they need to keep costs low in order to be competitive. Inspection of parts and assembly is expensive but necessary in order to maintain high reliability. With this abbreviated information as the organizational background, it’s time to look at scenarios. This is the “What if?” part of the process. Taking into account the known process areas of the company and the known and projected capabilities of the technology in question, ask “what would happen if we applied this technology?” Don’t forget to try to look for second order effects as well.

One obvious scenario for the space launch company would be to examine what if augmented reality was used in the inspection and verification process? One could imagine an assembly worker equipped with augmented reality glasses seeing the supply chain history of every part that is being worked on. Perhaps getting artificial intelligence expert guidance during assembly. The immediate effect would be reduced inspection time which equates to cost savings and increased reliability. A second order effect could be greater market share due to a better competitive advantage.

The bottom line is this hypothetical example is that for the space launch company, augmented reality stands a good chance of greatly improving how it does business. It would be a game-changer in at least one area of operations, but wouldn’t completely re-write all the rules.

As the company runs additional scenarios and visualizes the potential, it could determine whether or not this technology is something they want to just wait and see, or be an early adopter, or perhaps directly invest in to bring it along a little bit faster.

The key to all of this is that organizations have to be vigilant in knowing what new technologies and capabilities are on the horizon, and proactive in evaluating how they will be affected by them. If something can be done, it will be done, and if one organization doesn’t use it to create a competitive advantage, rest assured its competitors will.

by — ars technicaAugmented reality (AR) is a technology that has been on the cusp of becoming the next big thing for over 20 years. But the technology—the projection of data or digital imagery over real-world objects—has largely remained the stuff of fighter cockpits at the high end and of mobile games and art projects on the low. The promise of Google Glass—real augmented reality for the masses—failed to materialize.

That doesn’t mean the technology won’t fly at all. While many organizations experimented with Glass, other devices already in the hands—and on the heads—of companies and software developers have been pushing forward augmented reality in multiple industries. Work is being done today to integrate corporate cloud applications and data from intelligent machines connected to the “Internet of Things” into applications for mobile and wearable devices. And all this could help make humans on the factory floor, on the flight line, in hospitals, and in the field more effective and efficient. With Microsoft’s HoloLens promising a standard development platform for AR, the cost of building those applications could plummet in the next few years.Read more

By Stephen Cass with Charles Q. Choi — Spectrum

It seemed like the nascent augmented-reality industry was on a roller coaster at the start of the year. Things looked bad when Google announced that it was terminating sales of its Glass headset in favor of developing some new version to be announced at some time in the future. (Possibly in a galaxy far, far away.) But then the future looked bright again when Microsoft unveiled its HoloLens AR headset at a razzle-dazzle press event in late January.

But the truth is that well before the debut of HoloLens, the AR ecosystem had been moving away from Google’s model of always-available wearable computing and toward the idea that AR headsets should be—at least for now—something you use only for specific tasks. At the Consumer Electronics Show (CES) in Las Vegas just after New Year’s, most of the capabilities advertised a few weeks later by Microsoft for its HoloLens prototypes were already on display on the show floor (albeit spread among several exhibitors), and they were mostly doing industrial and enterprise work.
Read more

— The Atlantic

Since its debut in 2012, Google Glass always faced a strong headwind. Even on celebrities it looked, well, dorky. The device itself, once released in the wild, was seen as half-baked, and developers lost interest. The press, already leery, was quick to dog pile, especially when Glass’s users quickly became Glass’s own worst enemy.

Many early adopters who got their hands on the device (and paid $1,500 for the privilege under the Google Explorer program) were underwhelmed. “I found that it was not very useful for very much, and it tended to disturb people around me that I have this thing,” said James Katz, Boston University’s director of emerging media studies, to MIT Technology Review.
Read more

The study of consciousness and what makes us individuals is a topic filled with complexities. From a neuroscience perspective, consciousness is derived from a self-model as a unitary structure that shapes our perceptions, decisions and feelings. There is a tendency to jump to the conclusion with this model that mankind is being defined as self-absorbed and only being in it for ourselves in this life. Although that may be partially true, this definition of consciousness doesn’t necessarily address the role of morals and how that is shaped into our being. In the latest addition to The Galactic Public Archives, Dr. Ken Hayworth tackles the philosophical impact that technologies have on our lives.

Our previous two films feature Dr. Hayworth extrapolating about what radical new technologies in neuroscience could eventually produce. In a hypothetical world where mind upload is possible and we could create a perfect replica of ourselves, how would one personally identify? If this copy has the same memories and biological components, our method of understanding consciousness would inevitably shift. But when it comes down it, if we were put in a situation where it would be either you or the replica – it’s natural evolutionary instinct to want to save ourselves even if the other is an exact copy. This notion challenges the idea that our essence is defined by our life experiences because many different people can have identical experiences yet react differently.

Hayworth explains, that although there is an instinct for self-survival, humanity for the most part, has a basic understanding not to cause harm upon others. This is because morals are not being developed in the “hard drive” of your life experiences; instead our morals are tied to the very idea of someone just being a conscious and connected member of this world. Hayworth rationalizes that once we accept our flawed intuition of self, humanity will come to a spiritual understanding that the respect we give to others for simply possessing a reflection of the same kind of consciousness will be the key to us identifying our ultimate interconnectedness.

For now, the thought experiments featured in this third film remain firmly in the realm of science fiction. But as science fiction progresses closer to “science fact”, there is much to be considered about how our personal and societal values will inevitably shift — even if none of us needs to start worrying about where we’ve stored our back up memories just yet.

“If the doors of perception were cleansed, everything would appear to mankind as is, Infinite.”

-William Blake