Toggle light / dark theme

This archive file was compiled from an interview conducted at the Googleplex in Mountain View, California, 2013. In the discussion, Amit Singhal, a key figure in the evolution of Google’s search engine, broadly outlined the significant hurdles that stood in the way of achieving one of his long-held dreams — creating a true ‘conversational’ search engine. He also sketched out a vision of how the initial versions of such a system would, and also importantly, would not attempt to assist the individuals that it interacted with.

Though the vision was by design more limited and focused than a system capable of passing the famous Turing test, it nonetheless raised stimulating questions about the future relationships of humans and their ‘artificial’ assistants.

More about Amit Singhal:


Google Search:

This archive file was compiled from an interview conducted at the Googleplex in Mountain View, California, 2013.

As late as the 1980s and the 1990s, the common person seeking stored knowledge would likely be faced with using an 18th century technology — the library index card catalogue — in order to find something on the topic he or she was looking for. Fifteen years later, most people would be able to search, at any time and any place, a collection of information that dwarfed that of any library. And unlike the experience with a library card catalogue, this new technology rarely left the user empty-handed.

Information retrieval had been a core technology of humanity since written language — but as an actual area of research it was so niche that before the 1950s, nobody had bothered to give the field a name. From a superficial perspective, the pioneering work in the area during the 1940s and 50s seemed to suggest it would be monumentally important to the future — but only behind the scenes. Information retrieval was to be the secret tool of the nation at war, or of the elite scientist compiling massive amounts of data. Increasingly however, a visionary group of thinkers dreamed of combining information retrieval and the ‘thinking machine’ to create something which would be far more revolutionary for society.

In the case of Google’s Amit Singhal, it was a childhood encounter with a visionary work that gave him his initial fascination with the dream of the thinking machine — a fascination that would result in his evolution to be one of the individuals who began to transform the dream into a reality. The work that he encountered was not that of a scientific pioneer such as Alan Turing or Marvin Minsky — it was a visionary work of pop culture.

More about Amit Singhal:
Google Search:

It would be helpful to discuss these theoretical concepts because there could be significant practical and existential implications.

The Global Brain (GB) is an emergent world-wide entity of distributed intelligence, facilitated by communication and the meaningful interconnections between millions of humans via technology (such as the internet).

For my purposes I take it to mean the expressive integration of all (or the majority) of human brains through technology and communication, a Metasystem Transition from the human brain to a global (Earth) brain. The GB is truly global not only in geographical terms but also in function.

It has been suggested that the GB has clear analogies with the human brain. For example, the basic unit of the human brain (HB) is the neuron, whereas the basic unit of the GB is the human brain. Whilst the HB is space-restricted within our cranium, the GB is constrained within this planet. The HB contains several regions that have specific functions themselves, but are also connected to the whole (e.g. occipital cortex for vision, temporal cortex for auditory function, thalamus etc.). The GB contains several regions that have specific functions themselves, but are connected to the whole (e.g. search engines, governments, etc.).

Some specific analogies are:

1. The Broca’s area in the inferior frontal gyrus, associated with speech. This could be the equivalent of, say, Rubert Murdoch’s communication empire.
2. The motor cortex is the equivalent of the world-wide railway system.
3. The sensory system in the brain is the equivalent of all digital sensors, CCTV network, internet uploading facilities etc.

If we accept that the GB will eventually become fully operational (and this may happen within the next 40–50 years), then there could be severe repercussions on human evolution. Apart from the fact that we could be able to change our genetic make-up using technology (through synthetic biology or nanotechnology for example) there could be new evolutionary pressures that can help extend human lifespan to an indefinite degree.

Empirically, we find that there is a basic underlying law that allows neurons the same lifespan as their human host. If natural laws are universal, then I would expect the same law to operate in similar metasystems, i.e. in my analogy with humans being the basic operating units of the GB. In that case, I ask:

If, there is an axiom positing that individual units (neurons) within a brain must live as long as the brain itself, i.e. 100–120 years, then, the individual units (human brains and, therefore, whole humans) within a GB must live as long as the GB itself, i.e. indefinitely.

Humans will become so embedded and integrated into the GB’s virtual and real structures, that it may make more sense from the allocation of resources point of view, to maintain existing humans indefinitely, rather than eliminate them through ageing and create new ones, who would then need extra resources in order to re-integrate themselves into the GB.

The net result will be that humans will start experiencing an unprecedented prolongation of their lifespan, in an attempt by the GB to evolve to higher levels of complexity at a low thermodynamical cost.

Marios Kyriazis