Toggle light / dark theme

Last year, OpenBCI burst onto the scene with a Kickstarter campaign to fund development of an open source brain-computer interface for makers. The company more than doubled its goal of raising $100,000 for its EEG platform and, as I write this, OpenBCI is preparing to ship its first run of finished products. Conor does a demo of the technology in the link below:

OpenBCI Demo by Conor Russomano

Recently, I had a chance to talk with OpenBCI co-founder Conor Russomanno to get his thoughts on how open source has changed the brain-computer interface (BCI) landscape and opened new opportunities in the present, and how it might affect future development opportunities as well.

“The one thing that we’re hoping to achieve with OpenBCI is to really lower the barrier of entry – both in terms of educational materials but also cost,” Russomanno said. “I think one really awesome implication is that, in a classroom or laboratory, where one research grade EEG system was used by a number students, now the same amount of money could be used to outfit every student with their own device. And we’ve seen that in our customer base, as a huge proportion of our customers are students, graduate-level researchers and professors who want to use OpenBCI as a learning tool.”

Another exciting change that OpenBCI is creating is an open source community that allows users and makers to connect and share their knowledge to take the technology even further, Russomanno noted. In fact, OpenBCI is dedicating a fair chink of its resources to create that community.

“Probably the quickest people to jump on the preorders and the Kickstarters were students and researchers who were already working with existing EEG devices. We are trying to get more people interested by creating a community, putting out instructional guides and making it more approachable.

“I like to think what we’re doing with OpenBCI as Lego meets EEGs. I think of what we’re building as not a finished product, but as a narrow building block. And we want the world to use these blocks to build the cool stuff,” he said.

While the success and acclaim OpenBCI has received in mainstream media has been exciting, as he looks at the opportunities for further development of open source BCI, Russomanno is cautiously optimistic. In my mentioning of some of the farther-reaching future implications of BCI technologies, Conor brought the conversation back to the present, seeming less interested in far away “what ifs” than in how the next step forward in research might be taken:

“I think its important to be realistic about what the technology is capable of,” he said. “There are still a lot of challenges and they’re not all going to be solved by the same company or by a single field of research. It’s important that people collaborate together, specialize and improve upon a small facet of the problem by sharing that information with someone else who has solved another small facet.

“What we’re trying to do with OpenBCI is to expose all of the weaknesses of the full system and say ‘Hey guys! Jump in! What can you do to improve this other piece?’”

Another hurdle Russomanno hopes open source BCI can bridge in the future is the gap between the enthusiastic expectations of the general public and the realistic limits of the current technology. While an enthusiastic hope of BCI might involve telepathic control of technology or complete conscious “embodiment” in a robotic form, the current reality of BCI is less “far out.” The calibration of today’s external BCI devices still involves a relatively slow process of attuning to individual brain patterns, and isn’t nearly at “telepathic” levels, although some researchers have been able to develop significant control of devices and games with EEG headsets.

“I think many people would agree that the ‘Holy Grail’ of practical, wearable EEG is a sensor. Right now, it’s very difficult to acquire a strong EEG signal from outside the scalp because you’ve got a lot of things that produce ‘noise,’” he continued. “I’m not sure if it will ever happen, but the one problem that needs to be optimized is the electrode problem. We’ve broken out the header pins so you can attach any electrode on, so if that Holy Grail does get found in the next one or two years, hopefully you’ll just be able to plug it right into the OpenBCI board.

“On the other end of the spectrum,” Russomanno continued. “Once you’ve got good spatial resolution, a high number of channels and a good quality of signal, what do you do with this data now that you’re collecting it? How do you classify this information to create a system that responds in a pre-determined way?

“That’s where software and research comes in. You’ve got electrical engineers that need to solve the electrode problem. But then you’ve got data analytics and programmers that need to work together to create algorithms that will classify massive amounts of data,” he noted.

Conor’s earlier comment about the interdisciplinary nature of BCI research starts to hit home, but he wasn’t done yet. After software challenges, there’s one more hurdle left for the full optimization of open source BCI, he added.

“Every brain is similar but every brain is unique. When it gets to that point where we’ve got enough systems producing enough data that it can be scaled cheaply from individual to individual, then it’s a matter of building an interface that’s user customizable that has enough flexibility to be able to refine its classification inputs to match the specific user.”

Ultimately, Russomanno says the mission for OpenBCI is to make the technology more accessible and that, wherever open source BCI goes in the future, a community based on cooperation and collaboration will take it there.

With so much to work on, he’s aiming to facilitate the global conversation necessary to bring BCI to the next level, without funding it all in his own proprietary lab. If all brains are unique, then we’ll learn more about calibrating devices by testing and tinkering with people all over the world. Conor’s aim, however, it not just to use their heads as experiments, but to generate new hypotheses to test and ideas to explore — expanding the field for everyone.

“Putting our heads together” takes on multiple literal interpretations here, and that’s how he intends it.

Conor ended our chat with come practical advice for researchers and makers who want to help the cause: “The best way for people to join that community is to acquire the technology, try to figure out how to make it work, be vocal on the forums and keep spreading the open source wildfire.”

Walk into any workout facility and, odds are, you’ll see plenty of people working with a personal fitness trainer. It’s common practice to hire a trainer who can help improve your physical fitness, but is it possible to find a trainer for better mental fitness? Entrepreneur Ariel Garten founded her company, InteraXon, around this very idea. Bolstered by new advances in non-invasive brain-machine interfaces (BMIs) that can help people practice ways to reduce stress and improve cognitive abilities, Garten believes this is just the beginning of a lucrative industry.

Garten’s company manufactures a BMI called the Muse, an EEG sensor headband that monitors occipital and temporal brain waves. According to Ariel, the goal of the device is to help people understand their mental processes while at the same time learning to calm and quiet their mind at any time, with the same convenience of carrying around an iPhone.

Image credit:

“We don’t measure stress (with the Muse). What we’re actually measuring is a state of stable, focused attention,” Garten said. “When you hone your mind into a state of stable focused attention, what you’re able to do is resist the thoughts that you have and the distractions that you have. That helps you improve your cognitive function and attention. And, it also helps you decrease your stress, anxiety and all of the downstream physiological responses of that stress.”

According to Garten, when one is in a state of stable, focused attention, their brain-wave signatures are very similar to those seen when one is in a calm, relaxed state. Reaching that state of stable, focused attention leads to more Alpha waves, which have been recorded when people do activities like preparing to go to bed. Those Alpha waves represent a shutting down of external sensory processing, which Ariel says amounts to better holding your focus.

While it has parallels to meditation, Garten noted that BMI-based stable attention exercises can show one’s brain activity in real time. That feedback allows for deeper and faster learning, as well as the ability to maintain the practice or the exercise over time.

Much like the concept of muscle memory, once a user learns how to reach stable, focused attention, the Muse and its accompanying applications help train the user to be able to return to that state whenever it’s needed in their daily lives. Garten noted that a number of research studies have found focused attention exercises can also lead to increased gray matter in the brain, while decreasing anxiety and helping with depression, eating disorders, insomnia and more.

“In the next five years, you’re going to see a proliferation of these types of devices… simple clean, and easy-to-use brain sensing technology applications. What you’ll see is applications that let you play games directly with your mind and applications that let you understand and improve yourself,” she said. “We’re not at the point in technology where you can control stuff directly with your mind by reading a thought. That will happen someday…15 to 20 years in the future.”

While we can look at changes at brain states right now, the future promises more responsive technology that can help provide you with a much more detailed understanding of your brain’s function and use that information to support your interactions with your external environment.

“We’re going to be able to see applications and algorithms that understand you more effectively and are able to give you personalized insight based on you and your own brain and how it works, moment to moment to moment,” Garten said. “We’re going to see the hardware getting smaller, so that it fits into other devices you already wear. We’re also going to also see greater accessibility and cross platform integration with your favorite tools to get a more comprehensive picture of yourself.”

BMI technology that is minimally invasive but offers the user more personalized control certainly seems like a pragmatic first step towards broader acceptance of such technologies in the near future. While not part of the mainstream consumer market quite yet, Muse’s successes with its loyal customer base may point to real opportunity for similar products in the neurotechnology marketplace.

Controlling the brain, consciousness and the unconscious through artificial means has long been a staple plot of science fiction. Yet history has a way of proving the fictional to end up as possible, and the future of brain-machine interface appears to hold greater promise than ever before.

Image Credit: Society for Neuroscience (SFN)
Image Credit: Society for Neuroscience (SFN)

According to Neuroscience Researcher, Yale University Fellow, and the Director of Yale’s Clinical Neuroscience Imaging Center, Dr. Hal Blumenfeld, we can now therapeutically (and safely) go inside the brain. As he reflected on the recent advances in neuroscience, Blumenfeld cited the progress that’s been made in the last decade in understanding the relationship between brain activity and conscious thought as one of the biggest breakthroughs. The ability to find the switch in the brain that regulates consciousness, and turn it on and off, is a major step toward the treatment of epilepsy, brain injuries and more, and could have a profound effect on mankind, he said.

“I think the exciting advances are really looking in the network approach to understanding the brain, looking at the brain as a network, and understanding that, for something as wide reaching as consciousness to happen, you really need the whole brain network or most of the brain,” Blumenfeld said. “There’s a switch deep in the middle of the brain that can either be turned on or off. When that gets turned on, the whole rest of the brain network, including the cortex, all start to interact and create consciousness. When that switch gets flipped off, consciousness is turned down and we lose consciousness.”

While it sounds like a simple on/off operation, Blumenfeld noted that it’s not a smooth, linear process and that the different states of consciousness are subject to big jumps and rapid changes in the transition. Where researchers have made the biggest leaps, he said, is in gaining an understanding of those transitions and interactions throughout the entire network of the brain and how they regulate the level of arousal, attention and awareness.

Going forward, these breakthroughs could have a major effect in managing epileptic seizures, Blumenfeld said. While an epileptic seizure usually only affects one part of the brain, the seizure itself also flips that consciousness on/off switch to off. Avoiding that loss of consciousness during a seizure, he said, can also make the effects of the seizure milder and by extension, help improve the quality of life for those who suffer from epilepsy.

“The technology for deep brain stimulation has progressed fantastically in recent years, and it’s already being done for movement disorders, epilepsy and for chronic pain. (We have the technology to) safely implant in people’s brains a stimulator, like a pacemaker or a defibrillator, that detects when a seizure is happening and starts a stimulus,” Blumenfeld said. “Medicines and deep brain stimulation are not going to cure everyone of their seizures but, what this tells us is, there is another whole strategy we can take. Even if we can’t stop the seizures, if we can flip that switch back on so people will regain their consciousness during and after the seizure, they’ll be much better off.”

Beyond epilepsy, these new approaches in treatment can also be applied to those in a coma, those in a chronic vegetative state, and other disorders of consciousness, Blumenfeld said. These aren’t the only maladies being researched for brain stimulation. The use of optogenetics is also currently being studied for use in therapy and other brain disorders, he added. Ed Boyden and the Synthetic Neurobiology Group at MIT are hard at work in this domain of research.

“I think optogenetics is tremendously exciting and will continue to grow. There are a lot of challenges to implementing it in humans and safely carrying it out, but the promise is there,” Blumenfeld said. “It has a much more selective mode of action with individual neurons and I believe that eventually, we’ll be able to use that too (in our research). It will just take a bit more time until we get to that point.”

Looking forward, Blumenfeld noted that the potential future applications of BMI and brain stimulation could one day expand to attention disorders and even the modulation of human emotion. However, owing to the ethical questions that will certainly arise, he feels a priority should remain on developing further treatments or therapies for those who need it the most.

“First and foremost, we’ve got to look at the benefits we’re talking about, for people who are really suffering and really have tremendously impacted quality of life because of unpredictable-at-any-time-losing consciousness due to seizure, not being able to drive or, worse, people who are in a vegetative state. I think these are very promising therapies,” Blumenfeld said. “While scientists and human beings always have to consider the implications of them being used inappropriately, I think that doesn’t diminish from the importance of moving forward and developing these treatments so that they can be used for the people who need them the most.”