Toggle light / dark theme

Famous Chilean philosopher Humberto Maturana describes “certainty” in science as subjective emotional opinion and astonishes the physicists’ prominence. French astronomer and “Leonardo” publisher Roger Malina hopes that the LHC safety issue would be discussed in a broader social context and not only in the closer scientific framework of CERN.

(Article published in “oekonews”: http://oekonews.at/index.php?mdoc_id=1067777 )

The latest renowned “Ars Electronica Festival” in Linz (Austria) was dedicated in part to an uncritical worship of the gigantic particle accelerator LHC (Large Hadron Collider) at the European Nuclear Research Center CERN located at the Franco-Swiss border. CERN in turn promoted an art prize with the idea to “cooperate closely” with the arts. This time the objections were of a philosophical nature – and they had what it takes.

In a thought provoking presentation Maturana addressed the limits of our knowledge and the intersubjective foundations of what we call “objective” and “reality.” His talk was spiked with excellent remarks and witty asides that contributed much to the accessibility of these fundamental philosophical problems: “Be realistic, be objective!” Maturana pointed out, simply means that we want others to adopt our point of view. The great constructivist and founder of the concept of autopoiesis clearly distinguished his approach from a solipsistic position.

Given Ars Electronica’s spotlight on CERN and its experimental sub-nuclear research reactor, Maturana’s explanations were especially important, which to the assembled CERN celebrities may have come in a mixture of an unpleasant surprise and a lack of relation to them.

During the question-and-answer period, Markus Goritschnig asked Maturana whether it wasn’t problematic that CERN is basically controlling itself and discarding a number of existential risks discussed related to the LHC — including hypothetical but mathematically demonstrable risks also raised — and later downplayed — by physicists like Nobel Prize winner Frank Wilczek, and whether he thought it necessary to integrate in the LHC safety assessment process other sciences aside from physics such as risk search. In response Maturana replied (in the video from about 1:17): “We human beings can always reflect on what we are doing and choose. And choose to do it or not to do it. And so the question is, how are we scientists reflecting upon what we do? Are we taking seriously our responsibility of what we do? […] We are always in the danger of thinking that, ‘Oh, I have the truth’, I mean — in a culture of truth, in a culture of certainty — because truth and certainty are not as we think — I mean certainty is an emotion. ‘I am certain that something is the case’ means: ‘I do not know’. […] We cannot pretend to impose anything on others; we have to create domains of interrogativity.”

Disregarding these reflections, Sergio Bertolucci (CERN) found the peer review system among the physicists’ community a sufficient scholarly control. He refuted all the disputed risks with the “cosmic ray argument,” arguing that much more energetic collisions are naturally taking place in the atmosphere without any adverse effect. This safety argument by CERN on the LHC, however, can also be criticized under different perspectives, for example: Very high energetic collisions could be measured only indirectly — and the collision frequency under the unprecedented artificial and extreme conditions at the LHC is of astronomical magnitudes higher than in the Earth’s atmosphere and anywhere else in the nearer cosmos.

The second presentation of the “Origin” Symposium III was held by Roger Malina, an astrophysicist and the editor of “Leonardo” (MIT Press), a leading academic journal for the arts, sciences and technology.

Malina opened with a disturbing fact: “95% of the universe is of an unknown nature, dark matter and dark energy. We sort of know how it behaves. But we don’t have a clue of what it is. It does not emit light, it does not reflect light. As an astronomer this is a little bit humbling. We have been looking at the sky for millions of years trying to explain what is going on. And after all of that and all those instruments, we understand only 3% of it. A really humbling thought. […] We are the decoration in the universe. […] And so the conclusion that I’d like to draw is that: We are really badly designed to understand the universe.”

The main problem in research is: “curiosity is not neutral.” When astrophysics reaches its limits, cooperation between arts and science may indeed be fruitful for various reasons and could perhaps lead to better science in the end. In a later communication Roger Malina confirmed that the same can be demonstrated for the relation between natural sciences and humanities or social sciences.

However, the astronomer emphasized that an “art-science collaboration can lead to better science in some cases. It also leads to different science, because by embedding science in the larger society, I think the answer was wrong this morning about scientists peer-reviewing themselves. I think society needs to peer-review itself and to do that you need to embed science differently in society at large, and that means cultural embedding and appropriation. Helga Nowotny at the European Research Council calls this ‘socially robust science’. The fact that CERN did not lead to a black hole that ended the world was not due to peer-review by scientists. It was not due to that process.”

One of Malina’s main arguments focused on differences in “the ethics of curiosity”. The best ethics in (natural) science include notions like: intellectual honesty, integrity, organized scepticism, dis-interestedness, impersonality, universality. “Those are the believe systems of most scientists. And there is a fundamental flaw to that. And Humberto this morning really expanded on some of that. The problem is: Curiosity is embodied. You cannot make it into a neutral ideal of scientific curiosity. And here I got a quote of Humberto’s colleague Varela: “All knowledge is conditioned by the structure of the knower.”

In conclusion, a better co-operation of various sciences and skills is urgently necessary, because: “Artists asks questions that scientists would not normally ask. Finally, why we want more art-science interaction is because we don’t have a choice. There are certain problems in our society today that are so tough we need to change our culture to resolve them. Climate change: we’ve got to couple the science and technology to the way we live. That’s a cultural problem, and we need artists working on that with the scientists every day of the next decade, the next century, if we survive it.

Then Roger Malina directly turned to the LHC safety discussion and articulated an open contradiction to the safety assurance pointed out before: He would generally hope for a much more open process concerning the LHC safety debate, rather than discussing this only in a narrow field of particle physics, concrete: “There are certain problems where we cannot cloister the scientific activity in the scientific world, and I think we really need to break the model. I wish CERN, when they had been discussing the risks, had done that in an open societal context, and not just within the CERN context.”

Presently CERN is holding its annual meeting in Chamonix to fix LHC’s 2012 schedules in order to increase luminosity by a factor of four for maybe finally finding the Higgs Boson – against a 100-Dollar bet of Stephen Hawking who is convinced of Micro Black Holes being observed instead, immediately decaying by hypothetical “Hawking Radiation” — with God Particle’s blessing. Then it would be himself gaining the Nobel Prize Hawking pointed out. Quite ironically, at Ars Electronica official T-Shirts were sold with the “typical signature” of a micro black hole decaying at the LHC – by a totally hypothetical process involving a bunch of unproven assumptions.

In 2013 CERN plans to adapt the LHC due to construction failures for up to CHF 1 Billion to run the “Big Bang Machine” at double the present energies. A neutral and multi-disciplinary risk assessment is still lacking, while a couple of scientists insist that their theories pointing at even global risks have not been invalidated. CERN’s last safety assurance comparing natural cosmic rays hitting the Earth with the LHC experiment is only valid under rather narrow viewpoints. The relatively young analyses of high energetic cosmic rays are based on indirect measurements and calculations. Sort, velocity, mass and origin of these particles are unknown. But, taking the relations for granted and calculating with the “assuring” figures given by CERN PR, within ten years of operation, the LHC under extreme and unprecedented artificial circumstances would produce as many high energetic particle collisions as occur in about 100.000 years in the entire atmosphere of the Earth. Just to illustrate the energetic potential of the gigantic facility: One LHC-beam, thinner than a hair, consisting of billions of protons, has got the power of an aircraft carrier moving at 12 knots.

This article in the Physics arXiv Blog (MIT’s Technology Review) reads: “Black Holes, Safety, and the LHC Upgrade — If the LHC is to be upgraded, safety should be a central part of the plans.”, closing with the claim: “What’s needed, of course, is for the safety of the LHC to be investigated by an independent team of scientists with a strong background in risk analysis but with no professional or financial links to CERN.”
http://www.technologyreview.com/blog/arxiv/27319/

Australian ethicist and risk researcher Mark Leggett concluded in a paper that CERN’s LSAG safety report on the LHC meets less than a fifth of the criteria of a modern risk assessment. There but for the grace of a goddamn particle? Probably not. Before pushing the LHC to its limits, CERN must be challenged by a really neutral, external and multi-disciplinary risk assessment.

Video recordings of the “Origin III” symposium at Ars Electronica:
Presentation Humberto Maturana:

Presentation Roger Malina:

“Origin” Symposia at Ars Electronica:
http://www.aec.at/origin/category/conferences/

Communication on LHC Safety directed to CERN
Feb 10 2012
For a neutral and multidisciplinary risk assessment to be done before any LHC upgrade
http://lhc-concern.info/?page_id=139

More info, links and transcripts of lectures at “LHC-Critique — Network for Safety at experimental sub-nuclear Reactors”:

www.LHC-concern.info

It is of course widely accepted that the Greenland icesheet is melting at an alarming rate, accelerating, and is an irreversible process, and when it finally does melt will contribute to a rise in sea levels globally by 7 meters. This is discounting the contribution of any melt from the West Antarctic ice sheet which could contribute a further 5 meters, and the more long term risk of East Antarctic ice sheet melt, which is losing mass at a rate of 57 billion tonnes per year, and if melted in entirety would see sea levels rise by a further 60 meters.

In this light it is rather ‘cute’ that the site here dedicated to existential risks to society is called the Lifeboat Foundation when one of our less discussed risks is that of world-wide flooding of a massive scale to major coastal cities/ports & industries right across the world.

Why do we still continue to grow our cities below a safe limit of say 10 meters above sea level when cities are built to last thousands of years, but could now be flooded within hundreds. How many times do we have to witness disaster scenarios such as the Oklahoma City floods before we contemplate this occurring irreversibly to hundreds of cities across the world in the future. Is it feasible to take the approach of building large dams to preserve these cities, or is it a case of eventually evacuating and starting all over again? In the latter case, how do we safely contain chemical & nuclear plants that would need to be abandoned in a responsible and non-environmentally damaging procedure?

Let’s be optimistic here — the Antarctic ice sheets are unlikely to disappear in time scales we need to worry about today — but the Greenland ice sheet is topical. Can it be considered an existential risk if the process takes hundreds of years and we can slowly step out of the way though so much of the infrastructure we rely on is being relinquished? Will we just gradually abandon our cities to higher ground as insurance companies refuse to cover properties in coastal flooding areas? Or will we rise to a challenge and take first steps to create eco-bubbles & ever larger dams to protect cities?

I would like to hear others thoughts on this topic of discussion here - particularly if anyone feels that the Greenland ice sheet situation is reversible…

Once upon a time there was a cute little planet in the vast recesses of the sky. It was rich in water and mountains and was blessed – with good parents. The kids were allowed to play all day, and their coaches were able to lay the connections into the impending adult life in a way that did not hurt.

So the planet could have gone on forever. But, as in every serious fairy tale, there was a single bad sorcerer who had caused many kids to fall into holes from which they had great difficulty escaping – a sly activity which seemed to amuse him. The doting parents had to learn how to warn their children, and from then on his influence faded.

This fact caused the bad sorcerer to change his evil tactics: by confusing the parents ahead of the kids. This is where our hero – Farwinner – enters the tale. He asked his father: what does the sorcerer’s public slogan “Caution is stupid” mean? The father said it means that cars need no brakes. But this is not true!, Farwinner complained. Not even if it makes the cars very much cheaper?, his father replied. Of course not, said Farwinner: would you drive with us in a car without brakes? His father had to promise him with a slap on the hand to give up on the idea.

The sorcerer learned about this event and got furious: “This little Telemach” (he referred to Farwinner in a foreign language) is becoming a nuisance. I need to immunize everyone else against his influence.

But Farwinner had asked his father a second question: Is it true that your friends, the scientists, are trying to make the tiniest hole ever by using the biggest machine ever, and that the hole will then double in size every Sunday? His father replied he believes it is Mondays, not Sundays. To his amazement, Farwinner began to cry bitterly. His father was unable to understand and therefore could not console his son – until Telemach-Farwinner explained:

If the hole doubles in size every week, and is as small as the tiniest measurable particle (his father knew they are called “quarks” but did not want to interrupt), how long will it take until we are eaten?

His father remembered the story of the famous Persian king who was asked for a very cheap present: one rice grain on the first square of a checkerboard’s 64 fields, two on the next, 4 on the third, and so forth. In the same harmless-looking way, the tiny hole would double every week, remaining very very small for many months in a row. Only to – not very much later – devour the whole beautiful sky-blue little planet. But he did not want to upset young Telemach.

This is almost the end of the fairy tale. How do you think it continues? Did anyone on the little skyblue planet succeed in quelling young Telemach’s tears?

— To the best answer, sent in to this blog on the Internet, Telemach’s father will reply in person. Since he was told the story by an old friend himself, he still wavers a little bit how to answer properly. The youngest reader will no doubt give the most surprising and – therefore – most lifesaving answer.

As we all know, Venus’s atmosphere & temperature makes it too hostile for colonization: 450°C temperatures and an average surface pressure almost 100 times that of Earth. Both problems are due to the size of its atmosphere — massive — and 95% of which is CO2.

The general consensus is that Venus was more like that of the Earth several billion years ago, with liquid water on the surface, but a runaway greenhouse effect may have been caused by the evaporation of the surface water and subsequent rise of greenhouse gases.

It poses not just a harsh warning of the prospects of global warming on Earth, but also a case study for how to counter such effects — reversing the runaway greenhouse effect.

I have wondered if anyone has given serious thought to chemical processes which could be set in motion on Venus to extract the carbon dioxide from the atmosphere. The most common gas in the Universe is of course hydrogen, and if sufficient quantities could be introduced to the Venusian atmosphere, with the appropriate catalysts, could the carbon dioxide in the atmosphere be eventually reversed back into solid carbon compounds, water vapor and oxygen? The effect of this would of course not only bring down the temperature, but return the surface pressure, with 95% of its atmosphere removed, to one more similar to that of Earth. Perhaps in adding other aerosols the temperatures could be reduced further and avoid a re-runaway effect.

I’d like to hear others thoughts on this. It would be a long term project — but would perhaps make our closest planet our most habitable one in the future — one we could turn into a habitat that would be very accessible, with ample oxygen, water and mineral resources… The study of such a process would also greatly benefit Earth in the event that theorized runaway greenhouse effects start to occur on our own planet, the strategies learned could save it. Other issues to address regarding Venus: lack of magnetic field and its slow rotation would have to be considered, though hardly off-putting, and 150ppm sulfur dioxide in the atmosphere would need to be cleansed — surely not insurmountable.

There has been a lot of discussion about a lunar colony or at least a base as a precursor to sending humans to Mars. The advantages cited are its proximity to Earth, the use of telerobotics for construction, and the fact that we’ve been there before. My position is that it would be far easier to establish a self sufficient colony on Mars with existing technology.

One thing everyone agrees on is that local resources will have to be used. We now know that There has been a lot of geological and hydrological activity on Mars that has segregated and concentrated useful ore bodies that can be exploited with current extractive technology. One type of mineral of interest is the occurrence of iron and magnesium carbonate formations on the surface. Magnesium carbonate is easily converted by heating to magnesium oxide, the primary component of a type of cement that I am researching as a construction material for Mars. The widespread occurrence of sulfate salts also gives reason to believe that metal sulfide ore bodies are also available there. This type of ore can easily be refined with simple electrolytic equipment. The same metal refining on the Moon would require grinding and processing basalt with a lot of heavy equipment.

I would argue that Mars also has a more friendly environment. First, it has higher gravity than the moon, at 38% of Earth’s gravity. This may prove to be significant in minimizing the health effects of reduced gravity. The higher gravity would also aid in many industrial processes such as ore separation and concrete consolidation. Mars also has an atmosphere, however thin. While 4 to 8 millibars may not sound like much, it is enough to burn up a lot of micrometeorites before they reach the surface, reducing the danger of micrometeorite damage. It may also help reduce the danger of galactic cosmic rays, but that will need to be tested. One thing that is certain from my own research is that the thin atmosphere is enough to allow magnesium oxychloride cement to cure before a significant amount of water has evaporated from it, and prevent boiling during the curing process. On the airless Moon, this type of cement would boil violently and the water would evaporate before it would cure. The total lack of atmosphere on the Moon would preclude the use of any cement that depends on water for curing.

Dust will be the biggest challenge to machinery in either place, and I argue that it is much less of a challenge on Mars. We have already studied lunar dust, and it is composed of fractured particles that retain sharp edges and points, with no mechanisms for smoothing the surfaces such as wind or water movement. This makes Moon dust very abrasive to machinery (and air seals) and very irritating to human tissues on contact. Mars has annual wind storms that blow dust around the planet, and has had flowing water recently in it’s history. This would serve to smooth out Martian dust particles to something more closely resembling the kind of material found on Earth, which we can more easily deal with. As further evidence, we have had rovers survive multiple dust storms and keep operating. I would say this is as much a testament to the Martian environment as it is to NASA engineers. Additionally, the dust has been found to be largely magnetic, meaning that magnetic filtration could be used to keep it out of habitable spaces.

Some would argue that solar power is more abundant on the Moon, but the problem there is that it intermittent. 14 days on, then 14 days off. Power either has to be stored for two weeks at a time, or produced from other sources. On Mars, you just need to get through a single night. The dust storms can cause problems of course, but that is at most a month out of every 22.

Finally, there is the question of water. On the Moon, water ice is probably at the bottom of some deep craters near the poles. It can probably be mined beneath the surface, we are just not sure how far down we need to go. On Mars, snow has been observed made up of water ice, and water ice has been seen just beneath the surface in rover tracks. It appears to be everywhere, just below the surface.

The Moon may be closer as the bird flies, but in terms of energy to get there, Mars is not much further. The biggest challenge will be getting humans there alive, but once that is done the learning curve once we get there is much shorter. Instead of developing new and untested industrial processes to exploit lunar resources, we can use proven technology to exploit Martian resources with much less effort. The prize is there for the taking, and there is no point in stopping on the way to build a temple to Luna.

[Disclaimer: This contribution does not reflect the views of the Lifeboat Foundation as with the scientific community in general, but individual sentiment — Web Admin]

These presently offer the world the unique chance that a high-ranking personality on the planet has the courage to ask to be officially informed about CERN’s legal status before the International Court of Crimes against Humanity before which it was accused more than 3 years ago without any defense ever having come forward.

The issue on hand concerns scientific ethics: CERN refuses to offer a counterargument for nearly 4 years. And, to the best of the present writer’s knowledge, no scientist speaks up in person on behalf of CERN by offering a scientific counterargument that he or she would be ready to defend. The much simplified 2010 theorem proving the danger was not even attempted to be defeated by a scientist.

Einstein’s famous gravitational frequency shift is accompanied by an equally strong change in particle mass and particle charge, both locally undetectable too. The new-found corollaries to Einstein’s famous “happiest thought” endow black holes with radically new properties. These properties not only render CERN’s detectors blind to its most hoped-for product (black holes) but do simultaneously enhance the probability of the successful production of black holes – an ominous combination. The first sufficiently slow specimen produced will take lodging inside earth – to grow there exponentially leaving nothing but a 2-cm black relic of our planet after a few years’ time.

The decisive “Telemach” theorem is maximally simple as mentioned and therefore maximally easy to refute if false, but no one has come forward. The visible physics community refuses to discuss the proven results while the very few best are on my side.

Although the highest administrative bodies on the planet chose to rely on an invisible science pope’s word given to them with the kind request not to be mentioned by name, the planet has after a year of maximum-energy operation by CERN perhaps earned the right to learn about the identity of the father figure who took the responsibility for everyone into his able hands. And: What is his precious argument so we all may learn from it?

To return to the beginning: I can only say that I trust a man who with the greatest personal sovereignty survived Dr. Joffe’s mercilessly punching questions 9 days ago in a live “Zeit” interview. The planet is waiting for a personality of this caliber demanding to be publicly informed.

Please, do not refuse to help the planet, dear Mr. President Dr. Christian Wulff.

Recently, Newt Gingrich made a speech indicating that, if elected, he would want 10% of NASA’s budget ($1.7 billion per year) set aside to fund large prizes incentivizing private industry to develop a permanent lunar base, a new propulsion method, and eventually establishing a martian base.

THE FINANCIAL FEASIBILITY OF A LUNAR BASE
Commentators generally made fun of his speech with the most common phrase used being “grandiose”. Perhaps. But in 1996 the Human Lunar Return study estimated $2.5 billion from NASA to send and return a human crew to the Moon. That was before SpaceX was able to demonstrate significant reductions in launch costs. One government study indicated 1/3 of the cost compared to traditional acquisition methods. Two of SpaceX’s Falcon Heavies will be able to launch nearly as much payload as the Saturn V while doing so at 1/15th the cost of the same mass delivered by the Shuttle.

So, we may be at the place where a manned lunar base is within reach even if we were to direct only 10% of NASA’s budget to achieve it.

I’m not talking about going to Mars with the need for shielding but rather to make fast dashes to the Moon and have our astronauts live under Moon dirt (regolith) shielding while exploiting lunar ice for air, water, and hence food.

IS A SMALL COLONY WITHIN REACH?
But the point of this post is this. If a small lunar base is within our reach, how much more would it take to achieve something that most of us realize would be the single most important step in ensuring the survival of the human species should a truly existential event strike Planet Earth. So I’m describing a small, self-sufficient colony. I would say that the difference between a base and a self-sufficient colony is fairly small. Small enough to make it worth our while to attempt to achieve.

THE MOST ESSENTIAL REQUIREMENTS
So, what are the requirements for a self-sufficient colony? The most critical would be air, water, and food. But understand, oxygen and water can be produced from the 600 million metric meters of water ice estimated to exist at the north lunar pole. So there’s no shortage. And with recycling, the amount of daily required input could be pretty small — small enough to easily be within a day’s task for mining. But food also requires fertilizer. Fortunately for us, the LCROSS results showed that there is also methane and ammonia in the ice and the regolith contains other minerals such as phosphorus and potassium. So, the most critical components for a colony would already be present with a manned base at a lunar pole.

HABITATS
Besides this, the colony would also need protection from the vacuum and cosmic radiation — i.e. a sealed habitat. This should not be too difficult. For a base, options include inflatable habitats and using fuel tanks as durable, sealable compartments. Radiation protection is as simple as piling regolith over the structures or even digging trenches or caves into the sides of hills or craters. That’s fine for a base. But a self-sufficient colony requires that future colonists be able to construct their own habitats. This could be achieved in the intermediate term by simply caving out habitats, supporting them, and then inflating a liner. Many such liners could be delivered in a single 5,000 kg payload. In the long term, such liners could be produced as plastics from volatiles resulting from the production of water from lunar ice. Broken liners could be patched or even melted to produce new liners. Alternately, metals can be fairly easily produced from the regolith. Run a permanent magnet through the soil, extract iron, melt it using solar concentrating mirrors and then process the molten metal to sheets, wires, cast forms, etc. Glass could be made the same way along with fiberglass. Natural lighting could supplement electrical power by using aluminum mirrors and glass. Supplemental heat could be provided in a similar manner along with locally derived insulation.

ELECTRICITY
Thin film solar panels can provide > 1,000 W/kg. So a 5,000 kg payload could provide a very large amount of onging power (if my math is correct, enough for perhaps 500 colonists). Excessive solar panels could be stored under ground and then used as needed thereby giving the colony decades of power. Eventually, a self-sustaining colony would need to produce its own power from silicon in the regolith. Storage of energy during the lunar night could be accomplished through the use of electrolysis of water to oxygen and hydrogen. These could then be recombined in a fuel cell to produce electricity and heat. Alternately, the colonists could simply travel every two weeks to the other side of the hill near the pole to another sunlit habitat.

CLOTHING
Again, to buy the colony time to be able to develop the ability to produce its own space suits, many years’ worth of thin airproof liners to space suits could be delivered in a single 5,000 kg payload. Again, a self-sustaining colony would need to eventually produce their own. Between the use of fiberglass, metals, and locally produced plastic or silicon sealants, eventually the colony could produce their own. Of course plants could be grown to provide fibers for clothing.

EQUIPMENT
To avoid day-long exposure to cosmic radiation while mining surface ice, mining could either be conducted underground or telerobotically. But regolith is very gritty and can wear out teleoperated mining equipment. But if a colony is able to produce its own metals and had machining equipment which could be used to produce more machining equipment, then the colony could stay ahead of equipment wearing out.

High-tech equipment (computer chips, cameras, and radio equipment) is certainly useful but I believe that there are ways around needing them. Still, in the interim, a single 5,000 kg payload delivery could provide centuries worth of computer chips, camera chips, and critical radio equipment components. For example, the Voyager craft have been exposed to 30+ years of 360 degree space radiation yet still work fine. So, an apple box worth of computer chips could last centuries. Eventually the colony would need to produce its own high-tech equipment. Perhaps they could use 1940’s technology such as vacuum tubes.

GRAVITY & PREGNANCY
The Moon’s 1/6 gravity is probably not enough to prevent bone and muscle loss. Experiments on the international space station (ISS) show that an exercise program can do much to prevent bone loss. A recent study indicates that Fosamax prevents bone loss in astronauts. A 5,000 kg payload could give 83 million doses of Fosamax. Stored in a permanently shadowed area, it could provide for a very large number of future colonists. But also, a basic centrifuge or even a tether ball-like contraption could provide artificial gravity for colonists for part of the day. Trenches dug along its path could provide partial protection from cosmic rays. Alternately, space forums have discussed completely underground centrifuges using various ingenious approaches.

Of particular concern is how fetal children would develop given limited gravity. Studies of animals on the ISS indicates that this is a real concern. We don’t know enough about this issue. Perhaps pregnant women would need to spend significant amounts of time in a centrifuge perhaps in all trimesters.

ADDITIONAL REQUIREMENTS
I have started with the most essential requirements and have worked down. I propose that there are technologic solutions for each of the requirements but perhaps I have been unrealistic in one or more areas or perhaps have neglected to address an important requirement. Feel free to comment below.

GENETIC DIVERSITY
For a truly self-sustaining colony, for humans, the Minimum Viable Population (MVP) is in the realm 1,000. I personally suspect that it is actually less than that but a solution here could be for a single payload delivery of frozen embryos for surrogate parenting to be frozen long-term in permanently shadowed areas. Although this may strike some as being unethical, these would only be needed in the event of a truly existential event on Planet Earth.

PRESERVING THE BIOSPHERE
I envision the colony as not only securing the human species but a good representation of Earth’s entire biosphere. But discussing the details of that topic would extend this post much longer than it has already become. More on that later.

Every high-school student can confirm this conclusion, but the Albert-Einstein-Institute says this conclusion is false. For it implies if true that CERN is building a planet-buster – a fact which must perhaps not become known at the time of a planned new war.

“The house is burning but no one takes notice” (Buddha).

I write this post on specific request from Anthony, who kindly asked that I write a bottom line summary of what I found through my research which leads me to suggest the points should be cleared up in research and/or a safety conference on the LHC.

1. As HR is an unproven theory, it may prove to be ineffective compared to the math model. This regardless of Rossler’s Telemach theorem which attempts to prove this.

2. The G&M calculation on theoretical MBH accretion rates is fundamentally flawed, as it bases the analysis on one single MBH and fails to consider about MBH aggregation.

3. As HR is an unproven concept, it cannot be relied upon to detect MBH. The only method to be certain no MBH are created is to monitor unaccounted loss of mass/energy.

As concerns raised in the public domain were not being answered sufficiently, there is a moral duty for a public safety conference to discuss likely MBH decay/accretion rates.

I dismissed what I would consider the more colourful risks. I’m considering writing a follow-on whitepaper on the topic of MBH aggregation. If two MBH aggregate at any point it would halve the G&M calculated time-frame, and further aggregation would reduce the accretion time-frame accordingly. If frequent MBH aggregation was a typical expected occurrence, then you would have a run-away effect, so this requires an analysis.

[Disclaimer: This contribution does not reflect the views of the Lifeboat Foundation as with the scientific community in general, but individual sentiment — Web Admin]

If one of the following three elements can be defused, the black-hole danger is over:

# 1: Black holes possess radically new properties in general relativity that make them both much more likely to arise and undetectable at CERN.

# 2: A new chaotic attractor (rotation-symmetric Shil’nikov-Kleiner attractor) exists in real space which implies exponential growth of black holes inside matter.

# 3: The presumed safety guarantee provided by neutron stars’ persistence is disproved by quantum mechanics.

Three different fundamental sciences (general relativity, chaos theory, quantum mechanics) are needed jointly to help humanity evade nature’s trap. Very few scientists are up to the combined task. Is this our death sentence?

“A Beacon for the World”

Dear Mr. President Obama: Thank you for the “Time” interview given 8 days ago. Could you, therefore, request a public answer from scientists: “Is the offered proof that Geneva is planting a miniature but exponentially growing bomb into our planet flawed: Yes or No?” The planet will not forget your kindness if you do. Thank you that I was allowed to ask. Otto E. Rossler, chaos researcher at the University of Tübingen, Germany.

Is there a Single Head of State who Is Able to Think?

♥ Kim Jong Un dared not reply – just as Saddam Hussein did not reply when I offered him Lampsacus hometown of all persons on the Internet.

♥ Ahmadinejad I never wrote. But someone is bound to have told him about CERN’s lying to the planet about its assault on everyone and every child.

♥ Peres was the first politician whom I informed in 2007, Sarkozy the second, the pope the third.

♥ Now they are planning a war on deck while there is time bomb in the ship. No one is able to think as a captain.

————————————————
Buddha said “The house is burning but no one is thinking to leave.”
Jesus said “Who has ears to hear should hear.”
The angel said “The Lord can always be seen – haShem yera’eh.”
Mohamed said “You are in the fragrance of the flower.”
They all said “Think for a moment, my dear child.”
Hewlett-Packard agrees: “Thinking helps.”
—————————————————

W H Y N O T C H E C K O N C E R N ? ? ? ? ? ? ?

Germany Has Laws Allowing to Dishonorably Discharge Retroactively for 5 Years University Professors and take away their pension after 25 years of rewarded excellent service – for the “crime” of refusing to accept an out-of-field change of their medical (e.g.) professorship. Since the world does not know about the servility of the German elite – no one protested –, it cannot put into perspective the fact that all German-paid relativists support the German-led CERN in its lie that it were not doing everything in its might to launch planet earth onto the exponential Blandford cascade of black-hole growth – the only exponential growth law in nature known to cover 60 orders of magnitude. But CERN refuses even to quote the pertinent scientific publication for almost 4 years – German servilitude in matters of mass murder, revived?

China drove my friend Guangjun Mao into suicide for not being servile enough to its own university laws. Germany analogously killed my friend Peter Sadowski. But China is known for not having reached a high standard in human rights as of yet promising to climb up, while Germany dares criticize China for its lagging behind.

Germany’s hypocritical obedience laws are the real cause of the second and possibly last German mega crime. Mrs. Chancellor is called upon to explain the cover-up.

“Time” Has Lost the Privilege to Bear Its Name

No prominent journalist on the planet is able to see that when a Nobel prize candidate backed by a court begs to be proven wrong with his warning that CERN produces a slow earth bomb, this might be worth investigating to the point of insisting on an official answer from the very specialists who clamor behind the scene not to be asked.

Is There Really no Reasonable Person with Influence on the Planet who Wants to Know whether the Given Proof of Danger can be Refuted or Not?