Toggle light / dark theme

Three years ago, an outfit called Electric GT (EGT), led by Eric Hutchison, hit the green tech radar by converting a 1978 Ferrari 308 GTS to an electric car. Out went the mid-mounted 2.9-liter V8 making 280 horsepower and 181 pound-feet of torque, in went 48 lithium-ion batteries powering three AC51 HPEVS electric motors that cumulatively produced 465 hp and 330 lb-ft. The company’s relocated from San Diego to Chatsworth, California, and is back on the scopes at Green Car Reports with what it calls an Electric Crate Motor. The innovation repackages the ICE crate motor methodology into a system making EV conversions easier for the weekend enthusiast. EGT promises a plug-and-play system with “high performance and near zero maintenance,” having packaged its one- and two-motor systems into a “motor block” and peripherals that look just like an internal combustion engine.

The block includes everything necessary for the swap to electric except the batteries and the mounting bracket, meaning” motor(s), controller(s), charger(s), sensors, relays and computer systems.” EGT has already designed a number of mounting brackets, and can design others to custom specs. According to the web site, the package is “pre-engineered, pre-built, and pre-tested,” so installation takes five steps: Bolt in the block, install the wiring harness and cooling system, connect the AC and DC power leads with the OEM-level touch-safe connectors, and route the internal cooling pump to a heat exchanger. Voila, silent running. Every e-crate motor comes with an installation manual, EGT provides tech support, and auxiliaries like electric AC compressors and heaters can be optioned.

Elon Musk gave another hint about the Tesla Pickup truck design, which he now calls ‘Cybertruck’. The CEO says that it looks like ‘an armored personnel carrier from the future.’

The CEO shocked some when he said that the Tesla Pickup Truck will have a ‘really futuristic-like cyberpunk Blade Runner’ design without explaining what that meant other than saying that ‘it won’t be for everyone’.

On top of the comments not being clear, Musk didn’t really help anyone when he released a very cryptic teaser image for the pickup truck during the Model Y unveiling earlier this year.

Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity. The power they produce is low, but is probably enough to feed the millions of products that the internet of things will bring online.

As the internet of things expands, it is expected that we will need to have millions of products online, both in public spaces and in homes. Many of these will be the multitude of sensors to detect and measure moisture, particle concentrations, temperature and other parameters. For this reason, the demand for small and cheap sources of renewable energy is increasing rapidly, in order to reduce the need for frequent and expensive battery replacements.

This is where organic solar cells come in. Not only are they flexible, cheap to manufacture and suitable for manufacture as large surfaces in a printing press, they have one further advantage: the light-absorbing layer consists of a mixture of donor and acceptor materials, which gives considerable flexibility in tuning the solar cells such that they are optimised for different spectra – for light of different wavelengths.

Customers can trim branches for $35 a pound or cut down the whole plant (like a Christmas tree) for $25 a pound. In a video of the field’s grand opening, a customer buys a 15-pound plant for almost $400.

That may sound pricey, but considering you’re lucky to find most refined hemp products for $25 an ounce, it’s a bargain, according to the farm’s customers, who tell the local newspaper, they’ll be using the plant’s flowers to make CBD oil, lotions and tinctures for pain, anxiety, depression and insomnia.


Instead of conventional row crops, they now grow one of the most lucrative plants on the planet.

Ben and Taryn Marcus were first in line to get their state license to grow 7000 hemp plants on 3 acres last spring. They got their seeds in the ground just in time for a bountiful harvest this fall and are now enlisting the public’s help in picking it.

BERLIN, August 21, 2019 (Newswire.com) — The Neutrino Energy Group cooperates with a worldwide team of scientists and various international research centers, which deal with application research, the conversion of invisible radiation spectra of the sun, among other things the neutrinos (high-energy particles, which ceaselessly reach the earth) in electric power.

Is renewable energy hurting consumers?

During the last decade or so, consumers around the world have been encouraged to install solar panels on top of their houses. In certain climates, these rooftop photovoltaic installations can more than cover the electrical needs of an individual home, and many solar-equipped houses feature photovoltaic systems that wire directly into the grid. At times when the home has excess solar-generated electricity left over, this energy feeds back into the grid and helps out with the electricity needs of other energy company customers.

The 2019 Nobel Prize in Chemistry was awarded to John B. Goodenough (The University of Texas at Austin), M. Stanley Whittingham (Binghamton University, State University of New York), and Akira Yoshino (Asahi Kasei Corporation and Meijo University) “for the development of lithium-ion batteries”. With the creation and subsequent optimization of lithium-ion batteries to make them more powerful, lighter, and more robust, the seminal work of Goodenough, Whittingham, and Yoshino has had a profound impact on our modern society. This ubiquitous technology has revolutionized our daily lives by paving the way for portable electronics and made renewable energy sources more viable. While attempts to improve the performance of batteries continue, the lithium-ion battery has remained the world’s most reliable battery system for more than 40 years. The three winners will each receive an equal share of the roughly $1 million award. At 97, Goodenough is now the oldest person ever to win the Nobel Prize.

“A long-awaited recognition for the creators of lithium-ion batteries has come true. The electrochemistry and material science communities – and the greater chemistry community as a whole – are excited to hear the news of the 2019 Nobel Prize award to John B. Goodenough, M. Stanley Whittingham, and Akira Yoshino for their pioneering contribution to lithium-ion batteries,” said ACS Energy Letters Editor-in-Chief Prashant Kamat. “As we all know, the lithium-ion battery has revolutionized our modern-day activities. From mobile phones to laptops and from electronic gadgets to electric cars, these storage batteries have become part of our everyday life. We at ACS Publications are excited to be part of this celebration.”

Whittingham laid the foundation of the lithium-ion battery while working at Exxon in the 1970s. During that time, the oil crisis in the United States was ongoing, and there was a strong drive to develop methods of energy storage and transport that did not rely on fossil fuels. Whittingham developed a 2V lithium-ion battery based on a titanium disulfide cathode and lithium metal anode. While a seminal contribution to the advancement of the lithium battery, adopting Whittingham’s system for everyday use would be limiting due to the high reactivity of lithium metal and risk of explosion.

In a recent paper (Generating Light from Darkness), published on Joule, Stanford University researchers Aaswath P. Raman, Wei Li, and Shanhui Fan are reporting the successful creation of a device that is able to generate electricity by exploiting the difference of temperature that can be established during the night between the surrounding air and the surface of the device that is cooling itself by emitting infrared radiations towards the night sky.


In a recent paper, published on Joule, Stanford University researchers are reporting the successful creation of a device that is able to generate electricity by exploiting the difference of temperature that can be established during the night between the surrounding air and the surface of the device that is cooling itself by emitting infrared radiations towards the night sky.

The possibility to generate electricity by exploiting thermal difference is not new, what is new here is the idea of creating a temperature difference by having part of the device radiating energy into the outer space.

As shown in the graphic, the device contains a thermoelectric generator, one side exposed to the air temperature and the other in contact with an aluminum plate. This plate, like a solar panel, actually an anti-solar panel, is facing the night sky and radiates thermal energy towards the sky. This lowers the temperature of the plate, some 2 centigrades less than the lower part of the device that has the same temperature of the air. How is it possible the aluminum plate has not the same temperature of the air? Good question! Here is the trick. The aluminum plate is isolated from the ambient temperature with a transparent insulating panel that lets the radiating energy go through but blocks the heat exchange.

Are consumers ready for meat grown in a lab?

Companies like Memphis Meats, Aleph Farms, Higher Steaks, Mosa Meat and Meatable are all trying to bring to supermarkets around the world meat made from cultivated animal cells, but the problem has always been the cost.

Now, Future Meat Technologies has raised $14 million in new financing to build its first pilot manufacturing facilities to bring the cost of production of a cell-made steak down to $10 per pound — or $4 if the meat is combined with plant-based meat substitutes.

A new solar-powered system can take the salt out of ocean water. The technology can supply water for 25,000 people per day.