Toggle light / dark theme

Sad day for AI & RIP Mr. Minsky — Early AI Pioneer.


His family said the cause was a cerebral hemorrhage.

Well before the advent of the microprocessor and the supercomputer, Professor Minsky, a revered computer science educator at M.I.T., laid the foundation for the field of artificial intelligence by demonstrating the possibilities of imparting common-sense reasoning to computers.

“Marvin was one of the very few people in computing whose visions and perspectives liberated the computer from being a glorified adding machine to start to realize its destiny as one of the most powerful amplifiers for human endeavors in history,” said Alan Kay, a computer scientist and a friend and colleague of Professor Minsky’s.

Read more

Every month, we’re seeing more and more researchers and companies break the Quantum barrier by making their own Quantum Chip. Yale is the latest ones to introduce their own Quantum Chip. Next stop; a programmable Quantum Processor


In what can only be termed as a big step in the manufacture of practical quantum circuits, engineers from the Yale School of Engineering and Applied Science have created a silicon chip embedded with all the required components for a quantum processor.

Quantum computers are often portrayed as the next step in computer technology, and with good reason. Theoretically, a quantum computer would be thousands of times faster than today’s fastest supercomputers. They could also help in the creation of a practically capable AI. Quantum computers would drastically improve humanity’s data processing capabilities, and that is why researchers have been working for years towards their realization.

Read more

An international team of scientists has managed to create a quantum knot for the first time — a fundamental breakthrough in quantum physics that could one day help power the supercomputers of the future.

These knots aren’t quite the same as the ones you might tie to moor a boat to a jetty — they’ve been made in a superfluid form of quantum matter called Bose-Einstein Condensate, or BEC, and are more like smoke rings than traditional knots.

“For decades, physicists have been theoretically predicting that it should be possible to have knots in quantum fields, but nobody else has been able to make one,” said lead researcher, Mikko Möttönen.

Read more

BMI is an area that will only explode when the first set of successful tests are presented to the public. I suggest investors, technologists, and researchers keep an eye on this one because it’s own impact to the world is truly inmense especially when you realize BMI changes everything in who we view how we process and connect with others, business, our homes, public services, transportation, healthcare, etc.


Implantable brain-machine interfaces (BMI) that will allow their users to control computers with thoughts alone will soon going to be a reality. DARPA has announced its plans to make such wetware. The interface would not be more than two nickels placed one on the other.

These implantable chips as per the DARPA will ‘open the channel between the human brain and modern electronics’. Though DARPA researchers have earlier also made few attempts to come up with a brain-machine interface, previous versions were having limited working.

The wetware is being developed a part of the Neural Engineering System Design (NESD) program. The device would translate the chemical signals in neurons into digital code. Phillip Alvelda, the NESD program manager, said, “Today’s best brain-computer interface systems are like two supercomputers trying to talk to each other using an old 300-baud modem. Imagine what will become possible when we upgrade our tools to really open the channel between the human brain and modern electronics”.

Read more

Hot damn, our Ghost in the Shell future is getting closer by the day. DARPA announced on Tuesday that it is interested in developing wetware — implantable brain-machine interfaces (BMI) that will allow their users to control computers with their thoughts. The device, developed as part of the Neural Engineering System Design (NESD) program, would essentially translate the chemical signals in our neurons into digital code. What’s more, DARPA expects this interface to be no larger than two nickels stacked atop one another.

“Today’s best brain-computer interface systems are like two supercomputers trying to talk to each other using an old 300-baud modem,” Phillip Alvelda, the NESD program manager, said in a statement. “Imagine what will become possible when we upgrade our tools to really open the channel between the human brain and modern electronics.”

The advanced research agency hopes the device to make an immediate impact — you know, once it’s actually invented — in the medical field. Since the proposed BMI would connect to as many as a million individual neurons (a few magnitudes more than the 100 or so that current devices can link with), patients suffering from vision or hearing loss would see an unprecedented gain in the fidelity of their assistive devices. Patients who have lost limbs would similarly see a massive boost in the responsiveness and capabilities of their prosthetics.

Read more

Interesting article about nanoswitches and how this technology enables the self-assembly of molecules. This actually does help progress many efforts such as molecular memory devices, photovoltaics, gas sensors, light emission, etc. However, I see the potential use in nanobot technology as it relates to future alignment mappings with the brain.


Molecular nanoswitch: calculated adsorption geometry of porphine adsorbed at copper bridge site (credit: Moritz Müller et al./J. Chem. Phys.)

Technical University of Munich (TUM) researchers have simulated a self-assembling molecular nanoswitch in a supercomputer study.

As with other current research in bottom-up self-assembly nanoscale techniques, the goal is to further miniaturize electronic devices, overcoming the physical limits of currently used top-down procedures such as photolithography.

Read more

It’s been a weird day for weird science. Not long after researchers claimed victory in performing a head transplant on a monkey, the US military’s blue-sky R&D agency announced a completely insane plan to build a chip that would enable the human brain to communicate directly with computers. What is this weird, surreal future?

It’s all real, believe it or not. Or at least DARPA desperately wants it to be. The first wireless brain-to-computer interface actually popped up a few years ago, and DARPA’s worked on various brain chip projects over the years. But there are shortcomings to existing technology: According to today’s announcement, current brain-computer interfaces are akin to “two supercomputers trying to talk to each other using an old 300-baud modem.” They just aren’t fast enough for truly transformative neurological applications, like restoring vision to a blind person. This would ostensibly involve connect a camera that can transmit visual information directly to the brain, and the implant would translate the data into neural language.

To accomplish this magnificent feat, DARPA is launching a new program called Neural Engineering System Design (NESD) that stands to squeeze some characteristically bonkers innovation out of the science community. In a press release, the agency describes what’s undoubtedly the closest thing to a Johnny Mneumonic plot-line you’ve ever seen in real life. It reads:

Read more

A new DARPA program aims to develop an implantable neural interface able to provide unprecedented signal resolution and data-transfer bandwidth between the human brain and the digital world. The interface would serve as a translator, converting between the electrochemical language used by neurons in the brain and the ones and zeros that constitute the language of information technology. The goal is to achieve this communications link in a biocompatible device no larger than one cubic centimeter in size, roughly the volume of two nickels stacked back to back.

The program, Neural Engineering System Design (NESD), stands to dramatically enhance research capabilities in neurotechnology and provide a foundation for new therapies.

“Today’s best brain-computer interface systems are like two supercomputers trying to talk to each other using an old 300-baud modem,” said Phillip Alvelda, the NESD program manager. “Imagine what will become possible when we upgrade our tools to really open the channel between the human brain and modern electronics.”

Read more

Nvidia took pretty much everyone by surprise when it announced it was getting into self-driving cars; it’s just not what you expect from a company that’s made its name off selling graphics cards for gamers.

At this year’s CES, it’s taking the focus on autonomous cars even further.

The company today announced the Nvidia Drive PX2. According to CEO Jen-Hsun Huang, it’s basically a supercomputer for your car. Hardware-wise, it’s made up of 12 CPU cores and four GPUs, all liquid-cooled. That amounts to about 8 teraflops of processing power, is as powerful as 6 Titan X graphics cards, and compares to ‘about 150 MacBook Pros’ for self-driving applications.

Read more

A supercomputer simulation of a mere 10 milliseconds in the collapse of a massive star into a neutron star proves that these catastrophic events, often called hypernovae, can generate the enormous magnetic fields needed to explode the star and fire off bursts of gamma rays visible halfway across the universe.

The results of the simulation, published online Nov. 30 in advance of publication in the journal Nature, demonstrate that as a rotating star collapses, the star and its attached spin faster and faster, forming a dynamo that revs the magnetic field to a million billion times the magnetic field of Earth.

A field this strong is sufficient to focus and accelerate gas along the rotation axis of the star, creating two jets that ultimately can produce oppositely directed blasts of highly energetic .

Read more