Toggle light / dark theme

Good telescope that I’ve used to learn the basics: https://amzn.to/35r1jAk.
Get a Wonderful Person shirt: https://teespring.com/stores/whatdamath.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about a new study that discusses how we could potentially create an actual (but tiny) warp bubble.
Links:

Home Page


https://thedebrief.org/darpa-funded-researchers-accidentally-create-the-worlds-first-warp-bubble/?utm_sq=gx4kv63vzz&s=03
https://link.springer.com/content/pdf/10.1140/epjc/s10052-021-09484-z.
https://en.wikipedia.org/wiki/Alcubierre_drive.

Support this channel on Patreon to help me make this a full time job:
https://www.patreon.com/whatdamath.

Bitcoin/Ethereum to spare? Donate them here to help this channel grow!
bc1qnkl3nk0zt7w0xzrgur9pnkcduj7a3xxllcn7d4
or ETH: 0x60f088B10b03115405d313f964BeA93eF0Bd3DbF

Space Engine is available for free here: http://spaceengine.org.
Enjoy and please subscribe.

Twitter: https://twitter.com/WhatDaMath.
Facebook: https://www.facebook.com/whatdamath.
Twitch: http://www.twitch.tv/whatdamath.

✅ Instagram: https://www.instagram.com/pro_robots.

You are on the PRO Robots channel and in this form we present you with high-tech news. What can Google’s army of robots really do? Can time turn backwards? Catapult rockets and a jet engine powered by plastic waste. All this and much more in one edition of high-tech news! Watch the video until the end and write your impressions about the new army of robots from Google in the comments.

0:00 In this issue.
0:23 Everyday Robots Project.
1:20 California startup Machina Labs.
2:01 Aero cabs try to become part of transportation systems.
2:47 Renault decided to create its own flying car.
3:39 Startup Flytrex.
4:32 Startup SpinLaunch.
5:28 A rocket engine powered by plastic waste.
6:10 NASA launched the DART mission into space.
7:02 Parker Solar Probe.
7:48 Fitness Instructor Winning a Flight on Virgin Galactic’s Space Plane.
8:24 Quantum experiment by MIT physicists.
9:28 Quantum systems can evolve in two opposite directions.
10:19 Apple to launch its augmented reality headset project.
10:58 The world’s first eye prosthesis fully printed on a 3D printer.
11:38 South Korea announced the creation of a floating city of the future.
12:30 Moscow City Council approved the list of streets available for unmanned transport.
13:15 SH-350 drone of Russian Post from Aeromax company has successfully made its first test flight.
14:00 Concern “Kalashnikov” patented its own version of a miniature electric vehicle.

#prorobots #robots #robot #future technologies #robotics.

More interesting and useful content:
✅ Elon Musk Innovation https://www.youtube.com/playlist?list=PLcyYMmVvkTuQ-8LO6CwGWbSCpWI2jJqCQ
✅Future Technologies Reviews https://www.youtube.com/playlist?list=PLcyYMmVvkTuTgL98RdT8-z-9a2CGeoBQF
✅ Technology news.

#prorobots #technology #roboticsnews.

More specifically, the diffractive pupil mirror pattern spreads starlight into a complex flower pattern. This makes it easier to show the fine detail needed to detect the small wobbles a planet would make in the star’s motion.

TOLIMAN fills an important niche in the study of exoplanets, searching for them around the very nearest stars. As has been noted, that task has actually been more difficult, so far, than finding planets around more distant stars. TOLIMAN will focus on detecting these worlds, if they are there. What will it find?

Bottom line: A new custom-designed space telescope mission called TOLIMAN will search for nearby habitable planets in the closest star system to Earth, Alpha Centauri.

The hunt is on for leptoquarks, particles beyond the limits of the standard model of particle physics —the best description we have so far of the physics that governs the forces of the Universe and its particles. These hypothetical particles could prove useful in explaining experimental and theoretical anomalies observed at particle accelerators such as the Large Hadron Collider (LHC) and could help to unify theories of physics beyond the standard model, if researchers could just spot them.

A new paper published in Nuclear Physics B by Anirban Karan, Priyotosh Bandyopadhyay, and Saunak Dutta, of the Indian Institute of Technology Hyderabad, Kandi, together with Mahesh Jakkapu, Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan, examines the potential signatures of leptoquarks at the LHC to see how they could arise from for the possible mass ranges of these particles.

The main objective of this research is how to distinguish the signatures of different leptoquarks at proton-proton colliders like LHC or its proposed successor, Karan says.

The possibility of space mining in future was thrown into sharp relief this weekend as a Near Earth Asteroid (NEA) called 4,660 Nereus passed our planet.

Worth an estimated $5 billion in precious metals and measuring 330 meters across, Nereus at no point came anywhere near being dangerous, getting no closer than 2.4 million miles/3.9 million kilometers at 13:51 UTC on Saturday, December 11, 2021.

That’s about 10 times the distance between the Earth and the Moon.

So why so much attention on Nereus?

There seemed to be a lot of misunderstanding about how dangerous—or otherwise—Nereus could be to Earth.

That’s because Nereus belongs to the subgroup of NEAs known as Apollo asteroids, which means that it will cross the path of Earth’s orbit at some point.

Full Story:

NASA is about to launch the world’s most powerful space telescope. Webb’s first year of science could rewrite the history of the universe.


Recently, OpenAI opened public access to GPT-3, one of the world’s most sophisticated AI writing tools. It might fool you in a conversation.

While all atomic nuclei except hydrogen are composed of protons and neutrons, physicists have been searching for a particle consisting of two, three or four neutrons for over half a century. Experiments by a team of physicists of the Technical University of Munich (TUM) at the accelerator laboratory on the Garching research campus now indicate that a particle comprising four bound neutrons may well exist.

While agree that there are no systems in the universe made of only protons, they have been searching for particles comprising two, three or four neutrons for more than 50 years.

Should such a particle exist, parts of the theory of the strong interaction would need to be rethought. In addition, studying these particles in more detail could help us better understand the properties of neutron stars.