Toggle light / dark theme

CAPE CANAVERAL, FLA. — SpaceX made an early holiday delivery to the International Space Station on Sunday, bringing muscle-bound “mighty mice,” pest-killing worms and a smart, empathetic robot.

The station commander, Italy’s Luca Parmitano, used a large robot arm to grab onto the Dragon three days after its launch from Cape Canaveral. The two spacecraft soared 260 miles (420 kilometres) above the South Pacific at the time of capture.

“Whenever we welcome a new vehicle on board, we take on board also a little bit of the soul of everybody that contributed to the project, so welcome on board,” Parmitano told Mission Control.

NASA has tentative plans for a manned mission to Mars sometime in the 2030s. Between now and then, there’s still much that needs to be sorted. To start, massive dust storms, high levels of radiation, low temperatures and a lack of water make the Martian surface an unfriendly place for long-term visits. Taming it for human life will likely prove one of the most demanding and complex engineering puzzles in human history. With those extraordinary obstacles in mind, in 2015 NASA announced the 3D-Printed Habitat Challenge: an open call asking designers and architects outside the traditional aerospace industry to create plans for Martian living centred around 3D printing. One of 10 finalists announced in 2019, this plan from the design practices HASSELL and Eckersley O’Callaghan envisions teams of 3D-printing robots building a protective shield on the Martian surface several months in advance of a human landing. Upon arrival, astronauts would then work alongside the autonomous robots to piece together an inflatable, modular habitat.

Video by LightField London.

O.o.


A physicist at the University of California, Riverside, has performed calculations showing hollow spherical bubbles filled with a gas of positronium atoms are stable in liquid helium.

The calculations take scientists a step closer to realizing a , which may have applications in , spacecraft propulsion, and .

Extremely short-lived and only briefly stable, positronium is a hydrogen-like atom and a mixture of matter and antimatter—specifically, bound states of electrons and their antiparticles called positrons. To create a gamma-ray laser beam, positronium needs to be in a state called a Bose-Einstein condensate—a collection of positronium atoms in the same , allowing for more interactions and gamma radiation. Such a condensate is the key ingredient of a gamma-ray laser.

What – one vast, ancient and mysterious universe isn’t enough for you? Well, as it happens, there are others. Among physicists, it’s not controversial. Our universe is but one in an unimaginably massive ocean of universes called the multiverse.

If that concept isn’t enough to get your head around, physics describes different kinds of multiverse. The easiest one to comprehend is called the cosmological multiverse. The idea here is that the universe expanded at a mind-boggling speed in the fraction of a second after the big bang. During this period of inflation, there were quantum fluctuations which caused separate bubble universes to pop into existence and themselves start inflating and blowing bubbles. Russian physicist Andrei Linde came up with this concept, which suggests an infinity of universes no longer in any causal connection with one another – so free to develop in different ways.

Cosmic space is big – perhaps infinitely so. Travel far enough and some theories suggest you’d meet your cosmic twin – a copy of you living in a copy of our world, but in a different part of the multiverse. String theory, which is a notoriously theoretical explanation of reality, predicts a frankly meaninglessly large number of universes, maybe 10 to the 500 or more, all with slightly different physical parameters.

Before his death, Stephen Hawking submitted a research paper that predicts the end of the world.


Just two weeks before his death, renowned physicist Stephen Hawking submitted a research paper that suggests parallel universes and predicts the end of this one.

Hawking and his co-author Thomas Hertog published their research in “A Smooth Exit from Eternal Inflation,” detailing how scientists may also be able to detect other universes using a spaceship. According to Hertog, Hawking finished writing the paper from his deathbed, leaving behind a final legacy that is worthy of the Nobel Prize.

“He has often been nominated for the Nobel and should have won it. Now he never can,” he told the Sunday Times.

Alcor calls them “patients”, and right now, over 150 of these frozen souls are waiting for the future in vats of liquid nitrogen stored in Scottsdale, Arizona. We interview Dr. Ralph Merkle, a director at the Alcor Foundation and a respected pioneer in nanotechnology, to learn how recent advances in cryonics just may enable long-haul interstellar spaceflight sooner than you’d guess…

Bacteria, fungi, and viruses can enter our gut through the food we eat. Fortunately, the epithelial cells that line our intestines serve as a robust barrier to prevent these microorganisms from invading the rest of our bodies.

A research team led by a biomedical scientist at the University of California, Riverside, has found that simulated microgravity, such as that encountered in spaceflight, disrupts the functioning of the epithelial barrier even after removal from the .

“Our findings have implications for our understanding of the effects of space travel on intestinal function of astronauts in space, as well as their capability to withstand the effects of agents that compromise intestinal epithelial barrier function following their return to Earth,” said Declan McCole, a professor of biomedical sciences at the UC Riverside School of Medicine, who led the study published today in Scientific Reports.