Toggle light / dark theme

Let’s say you are the program manager of a very large, complex system. Perhaps it’s an aircraft, or a building, or a communications network. Your system is valued at over US $500 million. Could you imagine being told that you won’t ever be able to maintain it? That once it’s operational, it will never be inspected, repaired, or upgraded with new hardware?

Welcome to the world of satellite building. After a satellite is launched, it is on a one-way journey to disrepair and obsolescence, and there is little anyone can do to alter that path. Faults (which are called anomalies in the space business) can only be diagnosed remotely, using data and inferential reasoning. Software fixes and upgrades may be possible, but the nuts and bolts remain untouched. The upshot: Even if a satellite is operating well, it could lose its state-of-the-art status just a few years into a typical 15-year lifetime.

If governments and private companies could actively repair and revitalize their satellites in geosynchronous orbit—and move them to new orbits as needed—they could extend the lifespans of their investments and substantially defer the cost of building and launching replacements.

Read more

(Phys.org)—For the first time, physicists have demonstrated that hyperentangled photons can be transmitted in free space, which they showed by sending many thousands of these photons between the rooftops of two buildings in Vienna. Hyperentanglement means that the photons are simultaneously entangled in at least two different properties—in this experiment, the researchers combined two two-dimensionally entangled properties to achieve four-dimensional hyperentanglement.

By showing that hyperentanglement transmission is feasible in the real world and not only in the lab, the physicists expect that the demonstration could one day be scaled up to establish a highly secure quantum Internet that uses satellites to quickly and securely transmit across the globe.

The physicists, led by Rupert Ursin at the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences in Vienna, have published a paper on the distribution of hyperentanglement via atmospheric free-space links in a recent issue of Nature Communications.

Read more

The inventor of the EmDrive, a controversial space propulsion device that may speed up space travel, has revealed details of how it could be used to create a reusable launch vehicle to take rockets and satellites into space, as well as for personal flight.

Roger Shawyer has published a presentation about the third generation of the EmDrive, which he says is an improvement on the second generation. The original concept for the EmDrive, developed in 2008, was designed to enable in-orbit propulsion. The second generation, which has been in development since 2010, uses a superconducting cavity.

Read more

LONDON (Reuters) — The risk of cyber attacks targeting ships’ satellite navigation is pushing nations to delve back through history and develop back-up systems with roots in World War Two radio technology.

Ships use GPS (Global Positioning System) and other similar devices that rely on sending and receiving satellite signals, which many experts say are vulnerable to jamming by hackers.

About 90 percent of world trade is transported by sea and the stakes are high in increasingly crowded shipping lanes. Unlike aircraft, ships lack a back-up navigation system and if their GPS ceases to function, they risk running aground or colliding with other vessels.

Read more

A startup called OneWeb aims to make access to the internet (which the U.N. has deemed a basic human right) more widely available to those living in rural areas.

A satellite internet startup called OneWeb wants to make internet access available to all. From rural neighborhoods to completely remote communities, the company want to make sure that the internet isn’t just a luxury afforded to those who live in certain locations. Thanks in part to backing from Richard Branson of the Virgin Group, as well as Airbus and Qualcomm, OneWeb hopes to launch 720 satellites that would provide internet to places on Earth that are normally far out of reach.

Read more

Thales Alenia Space has seen massive savings in time and cost for the manufacturing of its products thanks to 3D printing, said Florent Lebrun, who heads space antenna development at the company. With this new manufacturing process, not only can Thales cut production lead time for certain components from months to weeks, it can save up to 50 percent on expenditure per part, he said.

Thales began experimenting with 3D printing, or additive manufacturing, in 2013, when it produced its first few demonstrator products. In 2015, it implemented a 3D-printed part for the first time on a telecommunications satellite — an antenna horn mounting strut for TurkmenAlem52E/MonacoSat. The company also produced eight titanium antenna fittings for Arabsat 6B that year, Lebrun said.

Now, two years later, after the launch of SGDC 1, Telkom 3S and Koreasat 7, Thales has orbited around 80 3D-printed parts, with more than 120 additional parts produced this year for future applications.

Read more

Derelict satellites could in future be grappled and removed from key orbits around Earth with a space tug using magnetic forces.

This same magnetic attraction or repulsion is also being considered as a safe method for multiple satellites to maintain close formations in space.

Such satellite swarms are being considered for future astronomy or Earth-observing missions – if their relative positions can stay stable they could act as a single giant telescope.

Read more

A 3D printer that could re-create itself from lunar material is in development at a university in Canada.

The technology could one day enable humans to 3D-print lunar bases, as well as conduct in-space manufacturing of satellites and solar shields on the moon that could help fight global warming, according to Alex Ellery, an associate professor in the Department of Mechanical and Aerospace Engineering at Carleton University in Ottawa, who is leading the project.

“I believe that self-replicating machines will be transformative for space exploration because it effectively bypasses launch costs,” Ellery told Space.com. [How Moon Bases and Lunar Colonies Work (Infographic)].

Read more