Toggle light / dark theme

Nice.


Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports. Superconductors are one of the most remarkable phenomena in physics, with amazing technological implications. Some of the technologies that would not be possible without superconductivity are extremely powerful magnets that levitate trains and MRI machines used to image the human body. The reason that superconductivity arises is now understood as a fundamentally quantum mechanical effect.

The basic idea of quantum mechanics is that at the microscopic scale everything, including matter and light, has a wave property to it. Normally the wave nature is not noticeable as the waves are very small, and all the waves are out of synchronization with each other, so that their effects are not important. For this reason, to observe quantum mechanical behavior experiments generally have to be performed at a very low temperature, and at microscopic length scales.

Superconductors, on the other hand, have a dramatic effect in the disappearance of resistance, changing the entire property of the material. The key quantum effect that occurs is that the quantum waves become highly synchronized and occur at a macroscopic level. This is now understood to be the same basic effect as that seen in lasers. The similarity is that in a laser, all the photons making up the light are synchronized, and appear as one single coherent wave. In a superconductor the macroscopic wave is for the quantum waves of the electrons, instead of the photons, but the basic quantum feature is the same. Such macroscopic quantum waves have also been observed in Bose-Einstein condensates, where atoms cooled to nanokelvin temperatures all collapse into a single state.

Read more

This is huge! They have been able to develop a method to trace high-dimensional entanglement.

Before this point, we had a method that could trace entanglement to limited level among particles; this method allows us to detect high-dimensional entanglement and even enable us to certify whether or not the system has reached the maximum level of entanglement.

So, we are now going to finally see “real” full-scale quantum computing. This changes everything.


RMIT quantum computing researchers have developed and demonstrated a method capable of efficiently detecting high-dimensional entanglement.

Entanglement in quantum physics is the ability of two or more particles to be related to each other in ways which are beyond what is possible in classical physics.

Having information on a particle in an entangled ensemble reveals an “unnatural” amount of information on the other particles.

Read more

Congrats DiAmante! Synthetic Diamond perfection for Quantum Computing and other technologies such as medical technology usage. Synthetic Diamonds (for all you startups or folks looking for something to get into) mass manufacturing is a huge demand area and it is only going to grow in demand with QC and the new medical technologies that are coming over the next 5 to 7 years. I have been researching 3D printers to see what can be done to mimic the process. Suggest HP and Intel to work hard in this space. I did locate one printer so far that is mass producing synthetic diamonds; the quality needs to be improved.


DiAmante makes synthetic diamonds for the semiconductor market.

The founder’s goal: ‘a diamond-based technology revolution’

The tiny company’s competitors include diamond giant DeBeers.

Read more

A walk down memory lane: I thought it would be fun to revisit an article from 1998 about Los Alamos’ announcement about their move to Quantum Computing which we found out later they expanded it to include a Quantum Network which they announced in 2009 their success in that launch. Times certainly have changed.


LOS ALAMOS, N.M., March 17, 1998 — Researchers at the Department of Energy’s Los Alamos National Laboratory have answered several key questions required to construct powerful quantum computers fundamentally different from today’s computers, they announced today at the annual meeting of the American Physical Society.

“Based on these recent experiments and theoretical work, it appears the barriers to constructing a working quantum computer will be technical, rather than fundamental to the laws of physics,” said Richard Hughes of Los Alamos’ Neutron Science and Technology Group.

Hughes also said that a quantum computer like the one Los Alamos is building, in which single ionized atoms act like a computer memory, could be capable of performing small computations within three years.

Read more

Einstein called it “spooky action at a distance.”

That’s because entanglement, a voodoo-like phenomenon in quantum physics linking particles that once interacted, seems to surpass the speed of light, violating the cosmic speed limit.

Because of this, it doesn’t fit in with Einstein’s theory of relativity, so he concluded that it was too ludicrous to be real.

Read more

RMIT quantum computing researchers have developed and demonstrated a method capable of efficiently detecting high-dimensional entanglement.

Entanglement in is the ability of two or more particles to be related to each other in ways which are beyond what is possible in classical physics.

Having information on a particle in an entangled ensemble reveals an “unnatural” amount of information on the other particles.

Read more

A team from the University of Science and Technology of China has shattered the quantum entanglement record, entangling 10 photon pairs.

Quantum entanglement is one of the strangest occurrences in the already strange world of quantum physics. Basically, entanglement is the state where quantum particles become so deeply linked that they share what is, in essence, the same existence.

The video below delves into the ins and outs of this phenomenon.

Read more

In a lovely demonstration of light’s quantum effects, physicists in the UK have just mixed a molecule with light at room temperature for the first time ever.

Light and matter are usually separate, with totally distinct properties, but now scientists have trapped a particle of light — called a photon — with a molecule in a tiny, golden cage of mirrors.

That’s a big deal, because it creates a whole new way to manipulate the physical and chemical properties of matter, and could change the way we process quantum information.

Read more