Toggle light / dark theme

Understanding the dynamics of granular materials—such as sand flowing through an hourglass or salt pouring through a shaker—is a major unsolved problem in physics. A new paper describes a pattern for how record-sized “shaking” events affect the dynamics of a granular material as it moves from an excited to a relaxed state, adding to the evidence that a unifying theory underlies this behavior.

The Proceedings of the National Academy of Sciences (PNAS) published the work by Stefan Boettcher, an Emory , and Paula Gago, an expert in modeling the statistical mechanics of granular matter in the Department of Earth Science and Engineering at the Imperial College of London.

“Our work marks another small step forward to describing the behavior of granular materials in a uniform way,” says Boettcher, professor and chair of Emory’s Department of Physics.

Discovery of liquid glass sheds light on the old scientific problem of the glass transition: An interdisciplinary team of researchers from the University of Konstanz has uncovered a new state of matter, liquid glass, with previously unknown structural elements—new insights into the nature of glass and its transitions.

While glass is a truly ubiquitous material that we use on a daily basis, it also represents a major scientific conundrum. Contrary to what one might expect, the true nature of glass remains something of a mystery, with scientific inquiry into its chemical and physical properties still underway. In chemistry and physics, the term glass itself is a mutable concept: It includes the substance we know as window glass, but it may also refer to a range of other materials with properties that can be explained by reference to glass-like behavior, including, for instance, metals, plastics, proteins, and even biological cells.

While it may give the impression, glass is anything but conventionally solid. Typically, when a material transitions from a liquid to a the molecules line up to form a crystal pattern. In glass, this does not happen. Instead, the molecules are effectively frozen in place before crystallization happens. This strange and disordered state is characteristic of glasses across different systems and scientists are still trying to understand how exactly this metastable state forms.

From an observatory high above Chile’s Atacama Desert, astronomers have taken a new look at the oldest light in the universe.

Their observations, plus a bit of cosmic geometry, suggest that the universe is 13.77 billion years old – give or take 40 million years. A Cornell researcher co-authored one of two papers about the findings, which add a fresh twist to an ongoing debate in the astrophysics community.

The new estimate, using data gathered at the National Science Foundation’s Atacama Cosmology Telescope (ACT), matches the one provided by the standard model of the universe, as well as measurements of the same light made by the European Space Agency’s Planck satellite, which measured remnants of the Big Bang from 2009 to ’13.

Will humanity ever travel to the stars? This is a question for the ages and it remains as open as a deserted stretch of interstate highway. To answer this question, we need an international scientifically-based effort that can chip away at the physics needed to make Star Trek real. Please have a listen to this episode with Guest Marc Millis. Well worth your time.


Propulsion physicist Marc Millis talks about the prospects for fast, efficient interstellar travel. Millis was head of NASA’s Breakthrough Propulsion Program at Glenn Research Center outside Cleveland for years beginning in the mid-1990s. We discuss why the problem of traveling to the stars is so difficult and what would need to happen to help such dreams become a reality. It’s a lively and irreverent discussion!

In the not so distant future you could be making money from home by controlling robots, robots that are in another country. Or there will be products, such as a self driving Tesla car, that can go out and earn money on their own.

This video takes a look at the futuristic ways people will be earning money. From telepresence jobs and future business ideas, to new space businesses, and even how people will be storing their money — moving away from cash and credit cards to using chips that are in their bodies.

Elon Musk’s Book Recommendations + Others (Affiliate Links)
• The Hitchhikers Guide to the Galaxy: https://amzn.to/3kNFSyW
• Ignition: https://amzn.to/3i20BgN
• Benjamin Franklin: https://amzn.to/2G24eWX
• Structures: Or Why Things Don’t Fall Down https://amzn.to/36KGCRc.
• The Foundation: https://amzn.to/3i753dU
• Six Easy Pieces (Thinking Behind Physics): https://amzn.to/3mUvIP2

Video Links Mentioned in the Video.
• Elon Musk: The Scientist Behind the CEO

• Robots Cooking: The Restaurant of the Future.
https://youtu.be/zCaDJOGnkuo.

• Space Inc: The New Space Businesses and Tech.

The Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) is home to many interdisciplinary projects which benefit from the synergy of a wide range of expertise available at the institute. One such project is the study of black holes that could have formed in the early universe, before stars and galaxies were born.

Such primordial black holes (PBHs) could account for all or part of dark matter, be responsible for some of the observed gravitational waves signals, and seed supermassive black holes found in the center of our Galaxy and other galaxies. They could also play a role in the synthesis of heavy elements when they collide with neutron stars and destroy them, releasing neutron-rich material.

In particular, there is an exciting possibility that the mysterious dark matter, which accounts for most of the matter in the universe, is composed of primordial black holes. The 2020 Nobel Prize in physics was awarded to a theorist, Roger Penrose, and two astronomers, Reinhard Genzel and Andrea Ghez, for their discoveries that confirmed the existence of black holes. Since black holes are known to exist in nature, they make a very appealing candidate for dark matter.

Containing various structures with a range of masses, from massive and dense clusters of galaxies to low-density bridges, filaments and sheets of matter, superclusters are among the largest structures in the known universe. Finding and investigating superclusters in detail could be essential in order to improve our understanding of the formation and evolution of large cosmic filaments.

Now, a group of astronomers led by Vittorio Ghirardini of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, reports the discovery of a new supercluster. The structure was identified by the eFEDS survey during its Performance Verification (PV) phase.

Consciousness is fundamental, pre-exists our Universe and manifests in everything that we think of as real. A brain, as important as it seems, is nothing more than the way that non-local consciousness operates at an “avatar” level during a lifetime. The evidence that all of this is true is consistent and overwhelming. But mainstream science is still bound by the centuries-old “materialist dogma” and stuck with the “hard problem” of consciousness. ​If we assume that consciousness doesn’t arise from the brain activity, as some neuroscientists still presume to be true, where does it come from? #consciousness #mind #self #theology #physics


Discussion of the hard problem of consciousness with certain solutions in phenomenology, possibilities of mind-uploading and implications…