Toggle light / dark theme

Circa 2017


In a few decades, we might get all our power from nuclear fusion. Researchers have been working to build functional nuclear fusion reactors, which mimic the fusion reactions that occur in the sun to generate power. Once we figure out fusion power, we could use these generators to power our lives for decades.

New technology could deliver “clean, limitless, low-voltage power for small devices”.


The rippling thermal motion of a tiny piece of graphene has been harnessed by a special circuit that delivers low-voltage electrical energy. The system was created by researchers in US and Spain, who say that if it could be duplicated enough times on a chip, it could deliver “clean, limitless, low-voltage power for small devices”.

Brownian motion is the random movement of a tiny particle that is buffeted by atoms or molecules in a liquid or gas – and the idea of harnessing this motion to do useful work has a long and chequered history. In the early 1960s, the Nobel laureate Richard Feynman popularized a thought experiment known as the “Brownian ratchet”, which had been conceived in 1912 by the Polish physicist Marian Smoluchowski. This involves a paddle wheel that is connected by an axle to a ratcheted gear. Both the paddle wheel and the ratchet are immersed in fluids. The system is imagined as being small enough so that the impact of a single molecule is sufficient to turn the paddle. Because of the ratchet, the paddle can only turn in one direction and therefore it appears that the Brownian motion of the paddle can be harnessed to do the work of turning the axle.

However, Feynman showed that if the two fluids were at the same temperature, collisions throughout the system would prevent this from happening. The only way work could be done, argued Feynman, is if the fluids are a different temperature, making the Brownian ratchet a heat engine.

Gaining a better understanding of the limiting factors for the existence of stable, superheavy elements is a decade-old quest of chemistry and physics. Superheavy elements, as are called the chemical elements with atomic numbers greater than 103, do not occur in nature and are produced artificially with particle accelerators. They vanish within seconds.

A team of scientists from GSI Helmholtzzentrum fuer Schwerionenforschung Darmstadt, Johannes Gutenberg University Mainz (JGU), Helmholtz Institute Mainz (HIM) and the University of Jyvaeskylae, Finland, led by Dr. Jadambaa Khuyagbaatar from GSI and HIM, has provided new insights into the processes in those exotic and for this, has produced the hitherto unknown nucleus mendelevium-244. The experiments were part of “FAIR Phase 0,” the first stage of the FAIR experimental program. The results have now been published in the journal Physical Review Letters.

Heavy and superheavy nuclei are increasingly unstable against the fission process, in which the nucleus splits into two lighter fragments. This is due to the ever-stronger Coulomb repulsion between the large number of positively charged protons in such nuclei, and is one of the main limitations for the existence of stable superheavy nuclei.

The double slit experiment — Does consciousness create reality? Quantum mechanics shows us that particles are in superposition, meaning they can exist in different states and even multiple places at the same time. They are nothing more than waves of probabilities, until the moment that they are measured. One interpretation of this phenomenon is that the measurement being made requires a measurer, or a conscious observer. If this is correct, then it implies that consciousness has to be is an integral part of creating the world that we observe. Could this consciousness then be required for creating reality? Does this mean that there would be no reality without consciousness?

Experiments can show that what we think of as particles behave like waves. Waves of probabilities. This is the foundation of Quantum mechanics. The famous double slit experiment illustrates this. What is bizarre is that when you try to find out what’s going on at the slits by placing a detector at the two slits to try to figure out which slit the individual atoms are going through – the “WHICH WAY” information, they all of a sudden stop behaving like waves, and behave like particles.

Why do atoms and other particles behave this way? There are many interpretations of this phenomenon.

The most widely accepted interpretation, called the Copenhagen interpretation, was devised in 1925 by Neils Bohr and Werner Heisenberg at the University of Copenhagen. Their theory proposed that the atom when it is not measured, is not distinct. But the Copenhagen interpretation does not say anything about consciousness. But what is measurement after all?

Does measurement take place at the instrument that measures it? Does measurement necessarily require a consciousness? This is called the “measurement problem of quantum mechanics.” Physicists do not universally agree on a resolution. There are various interpretations.

One such interpretation is called the von Neumann–Wigner interpretation. This says that in the long chain of measurement, the collapse occurs at the moment that a consciousness interprets the measurement. The consciousness of the physicist is making the particle distinct. And without this consciousness, the atom would just be a wave of probabilities.

One fascinating interpretation is the many worlds interpretation. It was put forth by Hugh Everett in 1957. This theory postulates that there is NEVER any collapse, that we may be a measuring it in our reality, but there is no measurement happening in a different reality, and the wave function continues in that different branch of reality. But at some branch of reality, the particle collapse never actually happens. There is some new evidence that seems to support this idea of multiple realities. A paper published just this year in 2019 by Massimiliano Proietti at Heriot-Watt University in Edinburgh Seems to support the idea that at least two equally provable realities could exist at a quantum level at the same time.

Leiden chemists Marc Koper and Ian McCrum have discovered that the degree to which a metal binds to the oxygen atom of water is decisive for how well the chemical conversion of water to molecular hydrogen takes place. This insight helps to develop better catalysts for the production of sustainable hydrogen, an important raw material for the chemical industry and the fuel needed for environmentally friendly hydrogen cars. Publication in Nature Energy.

For years there has been a heated debate in the literature: how to speed up the electrochemical production of on platinum electrodes in an alkaline environment? Chemist Ian McCrum watched from the sidelines and concluded that part of the debate was caused by the fact that the debaters were looking at slightly different electrodes, making the results incomparable. Time to change that, McCrum thought, who was a LEaDing Fellow postdoc in the group of Professor Marc Koper at the time.

Our Interstellar Boundary Explorer launched to space 12 years ago today!

IBEX studies our solar system’s boundary to interstellar space by measuring particles that rocket back towards Earth from the edge of the heliosphere, the vast bubble generated by the Sun’s magnetic field that envelops all the planets. Scientists recently used an entire solar cycle’s worth of data to explore how this boundary changes throughout the Sun’s activity cycles. https://www.nasa.gov/feature/goddard/2020/nasa-ibex-charts-11-years-change-at-boundary-interstellar-space-heliosphere-sun

Scientists have measured the shortest unit of time ever: the time it takes a light particle to cross a hydrogen molecule.

That time, for the record, is 247 zeptoseconds. A zeptosecond is a trillionth of a billionth of a second, or a decimal point followed by 20 zeroes and a 1.

Previously, researchers had dipped into the realm of zeptoseconds; in 2016, researchers reporting in the journal Nature Physics used lasers to measure time in increments down to 850 zeptoseconds.

Recently, researchers from the Institute of Intelligent Machines developed a new wavelength selection algorithm based on combined moving window (CMW) and variable dimension particle swarm optimization (VDPSO) algorithm.

CMW retained the advantages of the moving window algorithm, and different windows could overlap each other to realize automatic optimization of spectral interval width and number. VDPSO algorithms improved the traditional particle swarm optimization (PSO) algorithm.

This new algorithm, which is called VDPSO-CMW, could search the data space in different dimensions, and reduce the risk of limited local extrema and over fitting.