Toggle light / dark theme

There’s more than one way to rank future civilizations, you know! Regular viewers will know all about the Kardashev Scale, but now there’s a NEW theory in town! In this video, Unveiled journeys to the future of humanity to ask; What will we look like? What will we be like? And how much will we have changed?

This is Unveiled, giving you incredible answers to extraordinary questions!

Find more amazing videos for your curiosity here:
What If Humanity Was A Type VII Civilization? — https://youtu.be/pz-Z8AavJZY
What If the Universe is an Atom? — https://youtu.be/WYyu9h9JJfg.

Are you constantly curious? Then subscribe for more from Unveiled ► https://wmojo.com/unveiled-subscribe.

#WhatIf #Civilization #Future

In recent years, it has become possible to use laser beams and electron beams to “print” engineering objects with complex shapes that could not be achieved by conventional manufacturing. The additive manufacturing (AM) process, or 3D printing, for metallic materials involves melting and fusing fine-scale powder particles—each about 10 times finer than a grain of beach sand—in sub-millimeter-scale “pools” created by focusing a laser or electron beam on the material.

“The highly focused beams provide exquisite control, enabling ‘tuning’ of properties in critical locations of the printed object,” said Tresa Pollock, a professor of materials and associate dean of the College of Engineering at UC Santa Barbara. “Unfortunately, many advanced metallic alloys used in extreme heat-intensive and chemically corrosive environments encountered in energy, space and nuclear applications are not compatible with the AM process.”

The challenge of discovering new AM-compatible materials was irresistible for Pollock, a world-renowned scientist who conducts research on advanced metallic materials and coatings. “This was interesting,” she said, “because a suite of highly compatible alloys could transform the production of having high economic value—i.e. materials that are expensive because their constituents are relatively rare within the earth’s crust—by enabling the manufacture of geometrically complex designs with minimal material waste.

In what could be one of the significant developments in the field of quantum computing, Chinese researchers suggest having achieved quantum supremacy with the capability of performing calculations 100 trillion times faster than the world’s most advanced supercomputer. Researchers from the University of Science and Technology of China, Hefei, believe that when put into practical use, it can carry calculations in minutes which would have otherwise taken two billion years to perform. The fastest supercomputers, before this, claimed to have achieved computational efficiency easing up to 10,000 years of calculations.

Jiuzhang, as the supercomputer is called, has outperformed Google’s supercomputer, which the company had claimed last year to have achieved quantum computing supremacy. The supercomputer by Google named Sycamore is a 54-qubit processor, consisting of high-fidelity quantum logic gates that could perform the target computation in 200 seconds.

The researchers explored Boson sampling, a task considered to be a strong candidate to demonstrate quantum computational advantage. As the researcher cited in the research paper, they performed Gaussian boson sampling (GBS), which is a new paradigm of boson sampling, one of the first feasible protocols for quantum computational advantage. In boson sampling and its variants, nonclassical light is injected into a linear optical network, which generates highly random photon-number, measured by single-photon detectors.

Coronaviruses are enveloped, positive-stranded RNA viruses with a genome of approximately 30 kb. Based on genetic similarities, coronaviruses are classified into three groups. Two group 2 coronaviruses, human coronavirus OC43 (HCoV-OC43) and bovine coronavirus (BCoV), show remarkable antigenic and genetic similarities. In this study, we report the first complete genome sequence (30,738 nucleotides) of the prototype HCoV-OC43 strain (ATCC VR759). Complete genome and open reading frame (ORF) analyses were performed in comparison to the BCoV genome. In the region between the spike and membrane protein genes, a 290-nucleotide deletion is present, corresponding to the absence of BCoV ORFs ns4.9 and ns4.8. Nucleotide and amino acid similarity percentages were determined for the major HCoV-OC43 ORFs and for those of other group 2 coronaviruses. The highest degree of similarity is demonstrated between HCoV-OC43 and BCoV in all ORFs with the exception of the E gene. Molecular clock analysis of the spike gene sequences of BCoV and HCoV-OC43 suggests a relatively recent zoonotic transmission event and dates their most recent common ancestor to around 1890. An evolutionary rate in the order of 4 × 10−4 nucleotide changes per site per year was estimated. This is the first animal-human zoonotic pair of coronaviruses that can be analyzed in order to gain insights into the processes of adaptation of a nonhuman coronavirus to a human host, which is important for understanding the interspecies transmission events that led to the origin of the severe acute respiratory syndrome outbreak.

Coronaviruses are large (120- to 160-nm), roughly spherical particles with a linear, nonsegmented, capped, and polyadenylated positive-sense single-stranded RNA genome that is encapsidated in a helical nucleocapsid. The envelope is derived from intracellular membranes and contains a characteristic crown of widely spaced club-shaped spikes that are 12 to 24 nm long. The genus Coronavirus (International Committee on the Taxonomy of Viruses database [ICTVdb], virus code 03.019.0.1) belongs to the family Coronaviridae in the order Nidovirales (7, 8).

Before the 2002-to-2003 severe acute respiratory syndrome (SARS) epidemic, coronaviruses were somewhat neglected in human medicine, but they have always been of considerable importance in animal health. Coronaviruses infect a variety of livestock, poultry, and companion animals, in whom they can cause serious and often fatal respiratory, enteric, cardiovascular, and neurologic diseases (25). Most of our understanding about the molecular pathogenic properties of coronaviruses has been achieved by the veterinary virology community.

The DUNE collaboration has published their first scientific paper based on data collected with the ProtoDUNE single-phase detector located at CERN’s Neutrino Platform. The results show that the detector is performing with greater than 99% efficiency, making it not only the largest, but also the best-performing liquid-argon time projection chamber to date. Scientists now are using their findings to refine their experimental techniques and prepare for the construction of the international Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility, a next-generation neutrino experimental program hosted by the Department of Energy’s Fermilab in the United States.

“These first results are great news for us,” said DUNE co-spokesperson Stefan Söldner-Rembold, professor at the University of Manchester in the UK. “They show that the ProtoDUNE-SP detector works even better than anticipated. Now we are ready for the construction of the first components for the DUNE detector, which will feature detector modules based on this prototype, but 20 times larger.”

DUNE is an ambitious international experiment that will measure the properties of tiny fundamental particles called neutrinos. Neutrinos are the most abundant matter particle in the universe, but because they rarely interact with other particles, they are incredibly difficult to study. There are at least three different types of neutrinos, and, every second, 65 billion of them pass through each square centimeter of Earth. As they travel, they do something peculiar: They change from one type to another. Scientists think that these neutrino oscillations — as well as oscillations involving antimatter neutrinos — could help answer some of the big questions in physics, such as the observed matter-antimatter asymmetry in the universe. DUNE will also look for neutrinos from supernovae and search for rare subatomic processes such as proton decay.

MIT grad student Chiara Salemi and Professor Lindley Winslow use the ABRACADABRA instrument to reveal insights into dark matter.

On the first floor of MIT’s Laboratory for Nuclear Science hangs an instrument called “A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus,” or ABRACADABRA for short. As the name states, ABRACADABRA’s goal is to detect axions, a hypothetical particle that may be the primary constituent of dark matter, the unseen and as-of-yet unexplained material that makes up the bulk of the universe.

A team of researchers led by members of the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) has analyzed previously collected data to infer the true nature of a compact object—found to be a rotating magnetar, a type of neutron star with an extremely strong magnetic field—orbiting within LS 5039, the brightest gamma-ray binary system in the Galaxy.

Including former graduate student Hiroki Yoneda, Senior Scientist Kazuo Makishima and Principal Investigator Tadayuki Takahashi at the Kavli IMPU, the team also suggest that the particle acceleration process known to occur within LS 5039 is caused by interactions between the dense stellar winds of its primary massive star, and ultra-strong magnetic fields of the rotating magnetar.

Gamma-ray binaries are a system of massive, high-energy stars and compact stars. They were discovered only recently, in 2004, when observations of very-high-energy gamma-rays in the teraelectronvolt (TeV) band from large enough regions of the sky became possible. When viewed with visible light, gamma-ray binaries appear as bright bluish-white stars, and are indistinguishable from any other binary system hosting a massive star. However, when observed with X-rays and gamma-rays, their properties are dramatically different from those of other binaries. In these energy bands, ordinary binary systems are completely invisible, but gamma-ray binaries produce intense non-thermal emission, and their intensity appears to increase and decrease according to their orbital periods of several days to several years.

A hyper-sensitive instrument, deep underground in Italy, has finally succeeded at the nearly impossible task of detecting CNO neutrinos (tiny particles pointing to the presence of carbon, nitrogen, and oxygen) from our sun’s core. These little-known particles reveal the last missing detail of the fusion cycle powering our sun and other stars.

In results published on November 26, 2020, in the journal Nature (and featured on the cover), investigators of the Borexino collaboration report the first detections of this rare type of neutrinos, called “ghost particles” because they pass through most matter without leaving a trace.

The neutrinos were detected by the Borexino detector, an enormous underground experiment in central Italy. The multinational project is supported in the United States by the National Science Foundation under a shared grant overseen by Frank Calaprice, professor of physics emeritus at Princeton; Andrea Pocar, a 2003 graduate alumna of Princeton and professor of physics at the University of Massachusetts-Amherst; and Bruce Vogelaar, professor of physics at the Virginia Polytechnical Institute and State University (Virginia Tech).

Extremely light and weakly interacting particles may play a crucial role in cosmology and in the ongoing search for dark matter. Unfortunately, however, these particles have so far proved very difficult to detect using existing high-energy colliders. Researchers worldwide have thus been trying to develop alternative technologies and methods that could enable the detection of these particles.

Over the past few years, collaborations between particle and atomic physicists working at different institutes worldwide have led to the development of a new technique that could be used to detect interactions between very light bosons and neutrons or electrons. Light bosons, in fact, should change the energy levels of electrons in atoms and ions, a change that could be detectable using the technique proposed by these teams of researchers.

Using this method, two different research groups (one at Aarhus University in Denmark and the other at Massachusetts Institute of Technology) recently performed experiments aimed at gathering hints of the existence of dark bosons, elusive particles that are among the most promising dark matter candidates or mediators to a dark sector. Their findings, published in Physical Review Letters, could have important implications for future dark matter experiments.

Scientists discovered a strategy for layering dissimilar crystals with atomic precision to control the size of resulting magnetic quasi-particles called skyrmions. This approach could advance high-density data storage and quantum magnets for quantum information science.

In typical ferromagnets, magnetic spins align up or down. Yet in skyrmions, they twist and swirl, forming unique shapes like petite porcupines or tiny tornadoes.

The tiny intertwined magnetic structures could innovate high-density data storage, for which size does matter and must be small. The Oak Ridge National Laboratory-led project produced skyrmions as small as 10 nanometers – 10,000 times thinner than a human hair.