Toggle light / dark theme

By studying the spatial distribution of gamma-ray emission in the Milky Way, astronomers believe they have identified a signature of dark matter annihilation.

We live in a dramatic epoch of astrophysics. Breakthrough discoveries like exoplanets, gravity waves from merging black holes, or cosmic acceleration seem to arrive every decade, or even more often. But perhaps no discovery was more unexpected, mysterious, and challenging to our grasp of the “known universe” than the recognition that the vast majority of matter in the universe cannot be directly seen. This matter is dubbed “dark matter,” and its nature is unknown. According to the latest results from the Planck satellite, a mere 4.9% of the universe is made of ordinary matter (that is, matter composed of atoms or their constituents). The rest is dark matter, and it has been firmly detected via its gravitational influence on stars and other normal matter. Dark energy is a separate constituent.

Understanding this ubiquitous yet mysterious substance is a prime goal of modern astrophysics. Some astronomers have speculated that dark matter might have another property besides gravity in common with ordinary matter: It might come in two flavors, matter and anti-matter, that annihilate and emit high energy radiation when coming into contact. The leading class of particles in this category are called weakly interacting massive particles (WIMPS). If dark matter annihilation does occur, the range of options for the theoretical nature of dark matter would be considerably narrowed.

Read more

Dark matter could be made of particles that each weigh almost as much as a human cell and are nearly dense enough to become miniature black holes, new research suggests.

While dark matter is thought to make up five-sixths of all matter in the universe, scientists don’t know what this strange stuff is made of. True to its name, dark matter is invisible — it does not emit, reflect or even block light. As a result, dark matter can currently be studied only through its gravitational effects on normal matter. The nature of dark matter is currently one of the greatest mysteries in science.

If dark matter is made of such superheavy particles, astronomers could detect evidence of them in the afterglow of the Big Bang, the authors of a new research study said. [Dark Matter Explained (Infographic)].

Read more

Now, we’re hitting Terminator mode with this.


If you’re worried that artificial intelligence will take over the world now that computers are powerful enough to outsmart humans at incredibly complex games, then you’re not going to like the idea that someday computers will be able to simply build their own chips without any help from humans. That’s not the case just yet, but researchers did come up with a way to grow metal wires at a molecular level.

At the same time, this is a remarkable innovation that paves the way for a future where computers are able to create high-end chip solutions just as a plant would grow leaves, rather than having humans develop computer chips using complicated nanoengineering techniques.

DON’T MISS: iPhone 7: Everything we know so far

Researchers from IBM’s T.J. Watson Researcher Center are working to create wires that would simply assemble themselves in chips. The scientists use a flat substrate loaded with particles that encourage growth, and then add the materials they wish to grow the wire from.

Read more

Even if we don’t create a true AI for a thousand years, these algorithms, pared with our exponentially increasing computing power, could have much of the same effect on our civilization as the more traditional, AI-centric type Singularity. Very, very soon.


A schematic diagram of machine learning for materials discovery (credit: Chiho Kim, Ramprasad Lab, UConn)

Replacing inefficient experimentation, UConn researchers have used machine learning to systematically scan millions of theoretical compounds for qualities that would make better materials for solar cells, fibers, and computer chips.

Led by UConn materials scientist Ramamurthy ‘Rampi’ Ramprasad, the researchers set out to determine which polymer atomic configurations make a given polymer a good electrical conductor or insulator, for example.

A polymer is a large molecule made of many repeating building blocks. The most familiar example is plastics. What controls a polymer’s properties is mainly how the atoms in the polymer connect to each other. Polymers can also have diverse electronic properties. For example, they can be very good insulators or good conductors. And what controls all these properties is mainly how the atoms in the polymer connect to each other.

Read more

Yesterday, a report came from a tech company in Asia that they are proposing to do Quantum teleporting on humans. So, we have that camp; today we have the other camp with this article stating to do so means death. Personally, I have my doubts around humans or animals of any sort being able to teleport like Star Trek; great concept. However, to do so means breaking down your make up into particles and hopefully without killing you, the particles transport and reassemble themselves and everything remains healthy and functioning. Wish the test subjects all the best.


Remember last week’s video about the trouble with Star Trek’s transporter (a.k.a. a “suicide box”) by CGP Grey, delving into whether the teleported version of yourself would really be, well, you? Henry Reich of Minute Physics has posted a video response with his own resolution to the logical paradox.

You know what means… NERD FIGHT!

Okay, not really. They agree on many of the particulars. But the original video didn’t cover one important element to the problem of teleportation: the no-cloning theorem of quantum mechanics. As Reich explains:

Read more

Interesting position that IBM is taking with Quantum Computing. The one challenge that was highlighted in this article around unstable particles actually has been in the process of being resolved by Charles Marcus and colleagues at the University of Copenhagen’s Niels Bohr Institute; Univ. of Copenhagan’s report came out a few weeks ago and it may be a good thing for IBM to connect with the University so they can see how this was resolved.

Also, I don’t believe that we have 3 uniquely different platforms of Quantum as this article highlights. Trying to state that a D-Wave Quantum Computer is not a full Quantum platform or less of a Quantum Platform to is not a fair statement; and I encourage others to pull back from that perspective at this point until Quantum Computing is more evolved and standards around the platform is well defined and approved by industry. Also, the Gartner graph in this article is not one that I embraced given the work on Quantum is showing us the we’re less than 10 yrs away for it in the mainstream instead of Gartners graph showing us Quantum will require more than 10 years to hit the mainstream. And, I saw some of missed marks on Bio-sensors and BMI technology taking more than 10 years on the Gartner graph which is also incorrect since we hearing this week announcements of the new bio-chips which enables bio-sensors and BMIs are making some major steps forward with various devices and implants.


The 3 Types Of Quantum Computers And Their Applications by Jeff Desjardins, Visual Capitalist

It’s an exciting time in computing.

Just days ago, Google’s AlphaGo AI took an insurmountable lead in the 3,000 year-old game of Go against the reigning world champion, Lee Sedol. In a five-game series, the score is now 3–1 for the machine with one game left on March 15, 2016 in Seoul, South Korea.

Read more