Toggle light / dark theme

These results suggest that IL-12 and IFN-γ could one day be measured along with other biomarkers to predict future brain health in cognitively normal people–a tool that doesn’t yet exist in medicine.


Summary: Higher levels of two cytokines were associated with slower cognitive decline in aging adults, a new study reports.

Source: Mass General

Research has previously linked inflammation to Alzheimer’s disease (AD), yet scientists from Massachusetts General Hospital (MGH) and the Harvard Aging Brain Study (HABS) have made a surprising discovery about that relationship.

In a new study published in Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, they report that elevated levels of two chemical mediators of inflammation, known as cytokines, are associated with slower cognitive decline in aging adults.

COVID-19 was linked to brain tissue loss in a U.K. brain imaging study, according to early findings published June 15 in the preprint server medRxiv.

The study involved 782 participants, with researchers comparing brain scans from before and after COVID-19 infection. Researchers pulled data from the U.K. Biobank, which scanned more than 40000 participants before the pandemic hit the region, allowing them to invite participants back for a second imaging visit.

Findings showed tissue loss in certain parts of the brain.

An aging/longevity link, (not sure how novel)


As life expectancies around the world increase, so are the number of people who will experience age-related cognitive decline. The amount of oxygen in the blood declines with age. Aging in the brain might be naturally held at bay by adenosine receptor A2B (ADORA2B), a protein on the membrane of red blood cells which is known to help release oxygen from the blood cells so it can be used by the body.

Aging in the brain is naturally reduced by ADORA2B, which helps get oxygen to the brain when needed. Further testing will be needed to determine whether ADORA2B levels naturally decline with age and whether treatment with drugs that activate ADORA2B can reduce cognitive decline in normal mice.

The research also found that one in 5 patients reported post-traumatic stress disorder (PTSD), with 16% presenting depressive symptoms.

The study, conducted in Italy, involved testing neurocognitive abilities and taking MRI brain scans of patients two months after experiencing COVID-19 symptoms. More than 50% of patients experienced cognitive disturbances; 16%% had problems with executive function (governing working memory, flexible thinking, and information processing), 6%… See More.


COVID-19 patients suffer from cognitive and behavioral problems two months after being discharged from hospital, a new study presented at the 7th Congress of the European Academy of Neurology (EAN) has found.

Issues with memory, spatial awareness, and information processing problems were identified as possible overhangs from the virus in post-COVID-19 patients who were followed up within eight weeks.

Engineers at Duke University have devised a system for manipulating particles approaching the miniscule 2.5 nanometer diameter of DNA using sound-induced electric fields. Dubbed “acoustoelectronic nanotweezers,” the approach provides a label-free, dynamically controllable method of moving and trapping nanoparticles over a large area. The technology holds promise for applications in the fields ranging from condensed matter physics to biomedicine.

The research appears online on June 22 in Nature Communications.

Precisely controlling nanoparticles is a crucial ability for many emerging technologies. For example, separating exosomes and other tiny biological molecules from blood could lead to new types of diagnostic tests for the early detection of tumors and neurodegenerative diseases. Placing engineered nanoparticles in a specific pattern before fixing them in place can help create new types of materials with highly tunable properties.

According to a new study1, an anti-inflammatory protein called interleukin-38, or IL-38, is decreased in the brains of people with autism.

To help protect the brain from injury and infection, the immune cells in the brain, called microglia, usually produce inflammatory molecules2. But it is a tough balance – an inappropriate, or too large, inflammatory response can harm the health of the brain.

Research has shown that there may be changes in the structure and function of microglia in the brains of people with autism. This suggests that atypical inflammatory responses may play a role in autism3, 4, 5.

Some researchers suspect these bacterial ancestors living within our cells may contribute to a wide range of neurological and psychiatric disorders.

By Diana Kwon.

Long before the earliest animals swam through the water-covered surface of Earth’s ancient past, one of the most important encounters in the history of life took place. A primitive bacterium was engulfed by our oldest ancestor — a solo, free-floating cell. The two fused to form a mutually beneficial relationship that has lasted more than a billion years, with the latter providing a safe, comfortable home and the former becoming a powerhouse, fueling the processes necessary to maintain life.

- Progress, Potential, And Possibilities has had another busy month, with another awesome set of guests from academia, industry, and government, all focused on building a better tomorrow — Please come subscribe and enjoy all our current and future guests — Much more to come! # Health # Longevity # Biotech # SpaceExploration # ArtificialIntelligence # NeuroTechnology # RegenerativeMedicine # Sports # Environment # Sustainability # Food # NationalSecurity # Innovation # Future # Futurism # AnimalWelfare # Equity # IraPastor.

Researchers from the New York University School of Medicine have developed a brain implant designed to detect pain sensations in real-time and deliver bursts of pain-relieving stimulation. The device is still deeply experimental but a new proof of concept study demonstrates it working effectively in rodent models.

In the world of brain implants the chasm between science fiction and reality is still quite vast. Apart from some exciting human tests showing paralyzed individuals with implants regaining a sense of touch or controlling computers with their mind, most research in the field is still nascent.

Animal tests have demonstrated incremental technological advances, such as pigs broadcasting neural activity or monkeys playing Pong. Now, an interface that can detect pain signals in one part of the brain and immediately respond with stimulation to another part of the brain targeted to relieve that pain has been developed.