Toggle light / dark theme

The wonder of your gut: Experts explain why a healthy digestive system can trigger weight loss, fight depression, and ward off Parkinson’s.

  • Jasenka Zubcevic works in Physiological Sciences, and Christopher Martynuik in Toxicology at the University of Florida
  • They have been investigating how gut bacteria affect all other body parts
  • Here they explain everything we know thus far about the gut

By Jasenka Zubcevic and Christopher Martynuik For The Conversation

Read more

A new therapy for brain cancer.


A new type of cell that can seek and destroy brain cancer and then dispose of themselves has just been successfully tested in mice. The cells are able to home in on brain tumors and reduce them to between 2 to 5% of their original size[1].

This new approach could potentially give doctors a new weapon against aggressive cancers like brain cancer (glioblastoma), which normally kills in 12–15 months.

Interestingly, it only took the researchers four days to create and deploy these cells in the mice, which is an amazing accomplishment.

Read more

According to the report, the US Air Force, Marine Corps, Navy and other special forces are looking to improve troops’ performance by looking at their bodies at a genetic level (stock)

Earlier this year the AirForce successfully tested a helmet that can monitor brain activity and tell if the pilot is feeling stressed or panicked.

One research project is using a laptop-camera lens to find out if a person’s haemoglobin is oxygenated. This can then be used to work out a person’s heart rate.

Read more

ABERDEEN PROVING GROUND, Md. — Thanks to a new “suit” being developed by the DOD-funded Warrior Web program, future Soldiers will be able to march longer, carry heavier gear and improve mental sharpness.

The suit has pulleys and gears designed to prevent and reduce musculoskeletal injuries caused by the dynamic events typically experienced in the Warfighter’s environment.

Scientists and engineers from the U.S. Army Research Laboratory have been testing variations of the suit for more than three years at the Soldier Performance and Equipment Advanced Research, or SPEAR, facility at Aberdeen Proving Ground.

Read more

US military reveals $65m funding for ‘Matrix’ projects to plug human brains directly into a computer…


The US military has revealed $65 of funding for a programme to develop a ‘brain chip’ allowing humans to simply plug into a computer.

They say the system could give soldiers supersenses and even help treat people with blindness, paralysis and speech disorders.

The goal is ‘developing an implantable system able to provide precision communication between the brain and the digital world,’ DARPA officials said.

Read more

DARPA’s quest for high-bandwidth brain-computer interfaces (BCIs) has a new partner in Paradromics, which will be leading one of the agency’s six BCI-development consortia. This is just one of the projects working to develop a breakthrough BCI right now.

The U.S. Department of Defense has created six consortia to develop brain-computer interface (BCIs) technologies and is backing them up with a $65 million investment. On July 10, the Department chose Paradromics Inc., and neural interface company, to lead one of the six groups.

Read more

HOUSTON – (July 12, 2017) – Rice University engineers are building a flat microscope, called FlatScope TM, and developing software that can decode and trigger neurons on the surface of the brain.

Their goal as part of a new government initiative is to provide an alternate path for sight and sound to be delivered directly to the brain.

The project is part of a $65 million effort announced this week by the federal Defense Advanced Research Projects Agency (DARPA) to develop a high-resolution neural interface. Among many long-term goals, the Neural Engineering System Design (NESD) program hopes to compensate for a person’s loss of vision or hearing by delivering digital information directly to parts of the brain that can process it.

Read more

The benefits of rejuvenation biotechnologies would extend to the whole human society. #aging


Rejuvenation isn’t good just for individuals and the people close to them. It is good for society as a whole, for a number of reasons. These reasons—which I will now proceed to discuss—should be enough make rejuvenation research a top priority for humanity in its entirety.

Ever heard anyone lamenting that the great minds of history are no longer with us? That we could certainly do with all the Einsteins, Montalcinis, Fermis, Curies, etc, living longer? And have you ever felt saddened when a great mind of our time died? You probably did, or at the very least know someone who did.

Just imagine how much faster would science and progress march if our greatest physicists, doctors, engineers, philantrophists, etc, could live an indefinitely long life. Remember that we’re not talking about a longer life spent in decrepitude and sickness: We’re talking about a 200-year-old Einstein with the experience of two centuries but the physical and mental agility of a 25-year-old. If he was still alive, maybe he could’ve figured out how to unify general relativity with quantum mechanics—something that has been eluding all efforts for decades. Every time a great person (or any person, for that matter) dies, their particular experience is lost forever. Never mind that there are other experts, or that similar knowledge is found in books; it’s not even remotely the same. Rejuvenation would allow us to benefit from the knowledge and wisdom of the best among us for centuries on end.

Read more

It should be possible to build a silicon version of the human cerebral cortex with the transistor technology that was in production in 2013. The resulting machine would take up less than a cubic meter of space and consume less than 100 watts, not too far from the human brain. This article is summarizing the work of Jennifer Hasler and Bo Marr writing in Frontiers of Neuroscience – Finding a roadmap to achieve large neuromorphic hardware systems.

Computational power efficiency for biological systems is 8–9 orders of magnitude higher (better) than the power efficiency wall for digital computation. Analog techniques at a 10 nm node can potentially reach this same level of biological computational efficiency. Figure 1 show huge potential for neuromorphic systems, showing the community has a lot of room left for improvement, as well as potential directions on how to achieve these approaches with technology already being developed; new technologies only improve the probability of this potential being reached.

Read more