Toggle light / dark theme

Today, our IBM Research team published the first real world demonstration of a rocking Brownian motor for nanoparticles in the peer-review journal Science. The motors propel nanoscale particles along predefined racetracks to enable researchers to separate nanoparticle populations with unprecedented precision. The reported findings show great potential for lab-on-a-chip applications in material science, environmental sciences or biochemistry.

No More Fairy Tales

Do you remember the Grimm version of Cinderella when she had to pick peas and lentils out of the ashes? Now imagine that instead of peas and lentils you have a suspension of nanoparticles, which are only 60 nanometer (nm) and 100 nm in size — that’s 1,000 times smaller than the diameter of a human hair. Using previous methods, one could separate them with a complicated filter or machines, however these are too bulky and complex to be integrated into a handheld lab-on-a-chip.

Read more

In this way the new platform, developed by a team led by scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), could potentially be used to inactivate or detect pathogens.

The team, which also included researchers from New York University, created the synthesized nanosheets at Berkeley Lab’s Molecular Foundry, a nanoscale science center, out of self-assembling, bio-inspired polymers known as peptoids. The study was published earlier this month in the journal ACS Nano.

The sheets were designed to present simple sugars in a patterned way along their surfaces, and these sugars, in turn, were demonstrated to selectively bind with several proteins, including one associated with the Shiga toxin, which causes dysentery. Because the outside of our cells are flat and covered with sugars, these 2-D nanosheets can effectively mimic cell surfaces.

Read more

Researchers have developed a straightforward way to make a type of conducting polymers with high surface area—called “nanoflowers”—potentially useful for energy transfer and storage.

If you could brush your cheek against a nanoflower’s microscopic petals, you’d find them cool, hard, and… rusty. Common rust forms the inner skeleton of these lovely and intricate nanostructures, while their outer layer is a kind of plastic.

“Rust will always pose a challenge in Earth’s humid and oxygenated atmosphere,” says Julio M. D’Arcy, assistant professor of chemistry at Washington University in St. Louis and a member of the Institute of Materials Science and Engineering. “Corrosion makes structures fragile and decreases the ability of components to function properly. But in our lab, we’ve learned how to control the growth of rust so that it can serve an important purpose.”

Read more

Some theories suggest there could be many more dimensions that we’re unaware of, mostly because they’re imperceptibly tiny. Now researchers have taken the search for extra dimensions down to the nanoscale, using a neutron beam to study gravitational forces more precisely than ever before.

Read more

UCLA scientists have developed a new method that utilizes microscopic splinter-like structures called “nanospears” for the targeted delivery of biomolecules such as genes straight to patient cells. These magnetically guided nanostructures could enable gene therapies that are safer, faster and more cost-effective.

The research was published in the journal ACS Nano by senior author Paul Weiss, UC Presidential Chair and distinguished professor of chemistry and biochemistry, materials science and engineering, and member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Gene therapy, the process of adding or replacing missing or defective genes in patient cells, has shown great promise as a treatment for a host of diseases, including hemophilia, muscular dystrophy, immune deficiencies and certain types of cancer.

Read more

A step towards limitless energy? reactions at record efficiency…


Researchers from Colorado State University’s (CSU) Advanced Beam Laboratory used a compact but powerful laser they built from scratch to heat tiny, invisible wires, known as nanowires.

These contained a source of deuterium, one of two stable isotopes of hydrogen and a common source of fuel for nuclear fusion reactions.

The experiment resulted in a chain reaction of fusion events, which created a hot and dense plasma containing helium and highly energetic neutrons.

Read more

A group of engineers have proposed a novel approach to computing: computers made of billionth-of-a-meter-sized mechanical elements. Their idea combines the modern field of nanoscience with the mechanical engineering principles used to design the earliest computers.

Read more

Researchers at Colorado State University (CSU) have broken the efficiency record for nuclear fusion on the micro-scale. Using an ultra-fast, high-powered tabletop laser, the team’s results were about 500 times more efficient than previous experiments. The key to that success is the target material: instead of a flat piece of polymer, the researchers blasted arrays of nanowires to create incredibly hot, dense plasmas.

We have nuclear fusion to thank for our very existence – without it, the Sun wouldn’t have fired up in the first place. Inside that inferno, hydrogen atoms are crushed and through a series of chain reactions, eventually form helium. In the process, tremendous amounts of energy are released. Theoretically, if we can harness that phenomenon we could produce an essentially unlimited supply of clean energy, and although breakthroughs have been made in recent years, nuclear fusion energy remains tantalizingly out of reach.

Read more

A research team composed of scientists from the Institute of Bioengineering and Nanotechnology (IBN) of the Agency for Science, Technology and Research (A*STAR) and IBM Research has produced a new synthetic molecule that can target and kill five multidrug-resistant bacteria. This synthetic polymer was found to be non-toxic and could enable entirely new classes of therapeutics to address the growing problem of antibiotic-resistant superbugs.

The synthetic molecules are called guanidinium-functionalized polycarbonates and were found to be both biodegradable and non-toxic to human cells. Essentially, the positively-charged synthetic polymer enters a living body and binds specifically to certain bacteria cells by homing in on a microbial membrane’s related negative charge. Once attached to the bacteria, the polymer crosses the cell membrane and triggers the solidification of proteins and DNA in the cell, killing the bacteria.

Read more