Toggle light / dark theme

This essay was posted previously last year and removed and has appeared in abridged form in the European Space Safety online Magazine and can also be found on Yahoo voices.

Several dates are cited as marking the beginning of the space age. Sputnik, October 4th, 1957, Yuri’s day April 12th, 1961, and the first successful V-2 launch by the Nazis on October 3rd, 1942, to name a few. Some prefer December 21st, 1968, when human beings first escaped the Earth’s gravitational field on Apollo 8. When studying the events that allowed man to leave Earth, future historians may agree on a date not generally associated with space flight. July 16th, 1945 was Trinity, the first nuclear weapon test. Stanislaw Ulam, a 36-year-old Polish mathematician who helped build “the gadget”, visited ground zero after the test. Ulam later conceived the idea of propelling a spaceship with atomic bombs. Near the end of his life the eccentric genius stated the idea was his greatest work.

When considering nuclear propulsion, it must be understood that space is not an ocean, though often characterized as one. The distances and conditions are not comparable. While chemical energy has allowed humankind to travel across and above the surface of Earth, the energy required to travel in space is of a different order. Water, in the form of steam, was the agent of change that brought about the industrial revolution. Fossil fuel, burned and transformed by steam into mechanical work, would radically change the world in the span of a century. What is difficult for moderns to understand is not only how limited human capabilities were before steam, but how limited they are in the present in terms of space travel. The psychological limits of human beings limit space journeys to a few years. Chemical propulsion is not capable of taking human beings to the outer solar system and back within those crew limits. The solution is a reaction one million times more powerful. Nuclear energy is to the space age as steam was to the industrial age.

Space is not an ocean and this was the correct lesson drawn by Stanislaw Ulam after that suddenly bright morning in 1945. While metal can barely contain and harness chemical energy, Ulam thought outside that box and accepted nuclear energy could never be contained efficiently by any material. However, nuclear energy could be harnessed to push a spaceship in separate events to the fantastic velocities required for interplanetary travel without any containment problems at all- by using bombs. An uncontained burst of nuclear generated plasma could be withstood by a surface momentarily before the physical matter had time to melt.

Sixty years after Ulam’s stroke of genius, atomic bomb propulsion still has no competition as the only available propulsion system for practical interplanetary travel. This fact is almost completely unknown to the public. The term “ISP”, expressed in seconds, is used in measuring the efficiency of a rocket engine and chemical rockets have low ISP numbers but high thrust. The most efficient rocket engines, such as the space shuttle main engines, with a listed ISP of 453 seconds are also among the most powerful. Atomic bomb propulsion, thanks to the billions of dollars poured into star wars weapons research, would have an ISP exceeding 100,000 seconds. While other propulsion systems that use electricity have similar or higher numbers, the amount of thrust is trivial and requires months or years of continuous operation to develop any significant velocity. Considering space travel as not only a speed and distance problem, but also a time and distance problem, low thrust lengthens any missions to the outer solar system beyond crew limits. The thrust imparted by atomic bombs can in a short period easily accelerate thousands of tons to the comparatively extreme speeds necessary and then coast. Unlike an electric propulsion failure, a few dud bombs need not doom a mission or crew.

Though an incredible use of awesome power, the obstacles to employing bomb propulsion are not technical as some of the best engineers and physicists on the planet evaluated and validated the concept. A cadre of celebrity scientists also endorsed atomic bomb propulsion, including Werner Von Braun, who was present as a Nazi SS officer at the first successful V-2 launch, and as an American citizen at the launch of Apollo 8. Arthur C. Clarke and Carl Sagan were also supporters. The first serious work on bomb propulsion was done by physicist Freeman Dyson and weapon designer Ted Taylor on the top secret project Orion. Dyson’s son, in his book Project Orion, refers to the classified star wars project Casaba Howitzer. This device focused most of the energy of a nuclear explosion in one direction. Ted Taylor’s specialty was small warheads and he designed the Orion bombs, aka “pulse units.” The “unclassified” state of the art in nuclear weapons can direct 80 percent of bomb energy into a slab of propellant, converting this mass into a jet of superheated plasma. A pusher plate would absorb the blast without melting for the fraction of a second it lasts and accelerate the spaceship in steps with each bomb. Perhaps the closest experience to riding in an atomic bomb propelled spaceship would be repeated aircraft carrier catapult launches. Instead of the ocean- space, instead of supersonic fighters- a thousand ton spaceship.

Project Orion was canceled due to nuclear weapon treaties requiring international consent for using any such devices in space. A parallel to the failure of atomic bomb propulsion may be found in an examination of the industrial age. In The Most Powerful Idea in the World: A Story of Steam, Industry, and Invention, author William Rosen theorizes English patent law was the key enabler of the industrial age by allowing inventors to retain and profit from their intellectual property. The atomic bomb originated with a letter to President Roosevelt in 1939 from pacifist Albert Einstein- who was afraid the Nazi’s might build one first. With the human race living at the bottom of a deep, damp, and easily contaminated gravity well, atom bombs have never been applied successfully to a peaceful purpose. Stan Ulam, who lost most of his family in the holocaust, held the patent on atomic bomb propulsion. In the space age, nuclear weapon treaties and anti-nuclear activism have had the opposite effect of patent law and prevented atomic bomb propulsion from opening up the solar system to human exploration and colonization. Ironically, the nuclear industry is not safe on Earth- but deep space seems designed for it. There are no contamination or waste hazards, no long-term storage problems.

The problems with space travel are more than just the political barriers to detonating nuclear devices. The space industry is ipso facto a nuclear industry. Not only is nuclear energy the only practical source of propulsion in deep space, nuclear radiation generated by supernova and other celestial sources permeate space outside the protection of the earth’s atmosphere. All astronauts are radiation workers. Most, but sadly not all, space radiation is relatively easy to shield against. Many will argue using atomic bombs for propulsion is unnecessary. The presence of a small percentage of highly damaging and deeply penetrating particles- the heavy nuclei component of galactic cosmic rays makes a super powerful propulsion system mandatory. The tremendous power of atomic bomb propulsion is certainly able to propel the heavily shielded capsules required to protect space travelers. The great mass of shielding makes chemical engines, inefficient nuclear thermal rockets, the low thrust forms of electrical propulsion, and solar sails essentially worthless for human deep space flight. Which is why atomic bomb propulsion is left as the only “off the shelf” viable means of propulsion. For the foreseeable future, high thrust and high ISP to propel heavy shielding to the required velocities is only possible using bombs. The most useful and available form of radiation shielding is water. While space may not be an ocean, it appears human beings will have to take some of the ocean with them to survive.

The water comes before the bombs in human space flight because of the humans. The radiation hazards of long duration human space flight beyond earth orbit are only recently being addressed after decades of space station experience. The reason for this neglect is low earth orbit space stations are shielded from much of the radiation found outside the Earth’s Van Allen belts and magnetic field. An appreciation of the heavy nuclei component of galactic cosmic radiation, as well as solar events, will put multi-year human missions beyond earth orbit on hold indefinitely until a practical shield is available. While vested interests continue to promote inferior or non-existent technology, dismissing the radiation hazards and making promises they cannot keep, radiation scientists studying deep space conditions are skeptical- to say the least.

In the March 2006 issue of Scientific American magazine, Dr. Eugene Parker explained in simple terms survivable deep space travel. In “Shielding Space Travelers”, Parker states, “cosmic rays pose irreducible risks.” The premise of this statement is revealed when the only guaranteed solution to reducing the risk- a shield massing hundreds of tons- is deemed impractical. Active magnetic shields and other schemes are likewise of no use because while they may stop most radiation, the only effective barrier to heavy nuclei is mass and distance. The impracticality of a massive shield is due to first the expense of lifting hundreds of tons of shielding into space from Earth, and secondly propelling this mass around the solar system. Propelling this mass is not a problem if using atomic bombs, however, another problem arises. Even if the bombs could be politically managed, there is still the need to escape Earth’s gravitational field with all that shielding. Bomb propulsion is ideal for deep space but cannot be used in Earth orbit due to the Earth’s magnetic field trapping radioactive fallout that eventually enters the atmosphere. Not only lifting the shielding into orbit but chemically boosting it to a higher escape velocity away from the Earth is thus doubly problematic. Earth is a deep gravity well to climb out of.

The situation changed in March 2010 when NASA reported Mini-SAR radar aboard the Chandrayaan-1 lunar space probe had detected what appeared to be ice deposits at the lunar North Pole. An estimated 600 million tons of ice in sheets a couple meters thick. Moon water would allow a spaceship in lunar orbit to fill an outer hull with the 500+ tons of water required to effectively shield a capsule from heavy nuclei. This would enable an empty spaceship to “travel light” to the Moon and then boost out of lunar orbit using atomic bomb propulsion with a full radiation shield. Parker’s guaranteed but impractical solution had suddenly become practical. Fourteen feet of water equals the protection of the Earth’s air column at an altitude of 18,000 feet above sea level. This would protect astronauts not only from all forms of cosmic radiation but the most intense solar storms and the radiation belts found near the moons of Jupiter. With water and bombs, epic missions of exploration to the asteroid belt and outer planets are entirely possible. The main obstacles are again political, not technical. Bombs work, water works, and the Moon is in range of chemically propelled spacecraft launched from Earth.

There are other challenges to long duration beyond earth orbit human space flight but the solutions have been known for many decades. Zero gravity debilitation causes astronauts to weaken and permanently lose bone and bone marrow mass. The most practical solution, theorized since the early 1930′s, was investigated in 1966 during the Gemini 11 mission. A 100-foot tether experiment with the capsule attached to an Agena booster was successful in generating a small amount of artificial gravity by spinning the two vehicles. Equal masses on the ends of a tether can efficiently generate centrifugal force equal to one gravity. The concept is to “split the ship” when not maneuvering under power so the 500+ tons of shielded capsule is on one end and the rest of the craft of equal mass is reeled out on the other end of a thousand foot or more tether. Looking out through 14 feet of water, the crew of such a spaceship would view a slowly rotating star field. Long duration missions may last close to half a decade and the only option for providing air and water is to use a miniature version of Earth’s ecosystem. Equipment to enable a closed cycle life support system providing years of air and water is now available in the form of plasma reformers and facilitated by tons of water in which to grow algae or genetically modified organisms. With Earth radiation, Earth gravity, and air and water endlessly purified on board, crews can push their psychological limits as many years and as far out into the solar system as the speed of their atomic spaceships allow.

At the time of this writing, in early 2011, the outlook for human space flight is not encouraging. There are zero prospects for funding a long duration beyond earth orbit mission. Using atomic bombs to push minimum spaceship masses of over one thousand tons around the solar system for years at a time would cost as much as several major U.S. department of defense projects combined. Space flight is inherently expensive; there is no cheap. However, there is a completely valid military mission for atomic bomb propelled spaceships. Planetary protection became an issue in 1980 after the Chicxulub impact crater in Mexico was assigned blame for the mass extinction of the dinosaurs. Though overshadowed by the cold war, the impact threat remains. Comet and asteroid impacts are also the stuff of Hollywood movies and this is unfortunate in that a grave threat to the survival of life on earth is viewed as fictional entertainment. The impact threat is not science fiction; it is quite real, as the frequent near misses and geologic evidence of repeated extinction events show. Optimized directional bombs used in bomb propulsion could also be employed to deflect comets and asteroids long before they approach Earth.

While the consequences of ignoring the threat of an inevitable tsunami, earthquake, or hurricane are bad, the consequences of ignoring the inevitable comet or asteroid impact are apocalyptic. It is not only random impacts that could strike at any time the human race need guard against. In April of 2010 renowned physicist Stephen Hawking warned of alien civilizations posing a possible threat to humanity. Several large comets purposely crashed into a planet to wipe out the majority of indigenous life and prepare for the introduction of invasive alien species may be a common occurrence in the galaxy. Before readers scoff, they might consider towers brought down by jetliners, the discovery of millions of planets, and other recent unlikely events. It is within our power to defend Earth from the very real threat of an impact, and at this time self-defense is the only valid reason to go into space instead of spending the resources on Earth improving the human condition. Protecting our species from extinction is the penultimate moral high ground above all other calls on public funds. The vast treasure expended by nations threatening each other is not protecting the human race at all. Earth is defenseless. President Ronald Reagan in his 1983 Star Wars speech said, “I call upon the scientific community who gave us nuclear weapons to turn their great talents to the cause of mankind and world peace.” President Barack Obama has expressed a desire to reduce the world nuclear arsenal and converting these weapons to propulsion devices would do so. A powerful force of nuclear powered, propelled, and armed spaceships cannot guarantee Earth will not suffer a catastrophe. The best insurance for our species is to establish, in concert with a spaceship fleet, several independent self-supporting off world colonies in the outer solar system. The first such colony would mark the beginning of a new age.

Time line

1939 (August) Einstein sends letter recommending atomic bomb.

1939 (September) Germany invades Poland, World War 2 begins.

1942 First successful V-2 rocket launch by the Nazis.

1945 Trinity, the first atomic bomb is detonated.

1957 Sputnik achieves orbit using a rocket designed to carry an atomic bomb.

1961 Yuri Gagarin orbits Earth.

1966 Gemini 11 mission demonstrates artificial gravity.

1967 Outer Space Treaty restricts nuclear weapons in space.

1968 Apollo 8 crew escapes Earth’s gravitational field.

1980 Chicxulub impact crater revealed as dinosaur killer.

1983 Ronald Reagan gives Star Wars speech.

2006 Eugene Parker explains survivable deep space travel.

2010 (March) Millions of tons of ice are discovered on the Moon.

2010 (April) Stephen Hawking warns of alien civilization threat.

References

George Dyson, 2002, Project Orion: The True story of the Atomic Spaceship, Henry Holt and Company, LLC

Eugene Parker, March 2006, Shielding Space Travelers, Scientific American Magazine

William Rosen, 2010, The Most Powerful Idea in the World: A Story of Steam, Industry, and Invention, Random House

ENVIRONMENT & BACKGROUND

China is a rising world power with: increasing international economic power; improving military strength; tumultuous social issues. Exiting from the recent global economic and financial crisis, China sees itself strengthening and growing while America (and much of the ‘Western’ world) struggles to recuperate. This recovery disparity has given support to Chinese sentiment suggesting the superiority of Chinese policy and social culture.

China’s newfound (or newly revived) superiority complex has complicated American interaction with the government, where China now appears to be doing everything it can to avoid looking weak and to resist US/Western influence. With China’s rise, incentives for America to pressure democratization, establishment of free market economics, and improvement of human rights have grown in intensity. The US has very direct interests in the ‘Westernization’ of China and China does see benefits to cooperation, however they seem to resist or avert most American challenges to the Sino-status quo.

AVAILABLE OPTIONS

America can become aggressive, passive, apathetic, or cooperative in its relationship with China. The US could seek to dominate China, let China strengthen its own dominance, ‘step out of the picture’, or work with China to grow and develop both countries simultaneously.

It is more likely that the US will work to cooperate with China, perhaps doing so with a passive-aggressive bias that asserts American interests without direct systemic attempts to alter Chinese institutions. China and the US have committed to positive and cooperative relations, however it can be expected that such a commitment will only be honored as long as it serves the interests of both states.

INFLUENCES

Differences over human rights, domestic/foreign policy, democratization, and economic/financial theory and practice will greatly influence how the two states interact. Economically and politically it behooves both states to cooperate in the short and long runs. Also, much of Asia supports and welcomes American presence in the region. As long as the US restrains itself from imperializing the region and overthrowing China’s presence, and as long as China does not attempt to oust America, a relatively stable base that assures permanent presence of both parties in the region can be used to develop further policy on.

America is influenced by its democracy, free market policies, and strong human rights, as well as its desire to impose these principles on other states. The base previously described provides the US with a simple supportive argument; ‘if we’re both going to interact in the same place, we better learn how to interact productively’. The simple presence of such an argument influences America’s decisions as it provides a point China cannot ignore.

The US is very economically interested and invested in the greater Asian region. America will surely seek out policy that improves US — China relations, however it will levy importance on policy that enhances economic efficiency and effectiveness in the region (perhaps at the expense of US — China relations).

Another great influence on America’s decision making process is the power China has in the international system. As a permanent member of the UN Security Council, China’s ability to veto measures and resolutions greatly affects America’s (perceived) international power. Learning to effectively interact with China would improve international US — Chinese efforts.

FINAL DECISION/RECOMMENDATION

US — Chinese relations should focus around three main points: policy cooperation; healthy economic competition; political and cultural respect.

The US should help China grow as a world power, including it in international issues and decision making processes as well as new and/or existing trade organizations. By helping China to grow it shows America is interested in seeing the country develop rather than restraining it. This will make negotiation easier and will help to keep China from making extremist policy decisions. Cooperation shows desire for mutual progress.

Provision of challenging economic competition motivates economic improvement and progress. China artificially inflates its currency, dramatically boosting its exports. However, China has realized it cannot grow/mature on export economics. The US should focus on aiding China to develop its own domestic market. As China’s economy develops, its growth rate will slow as it begins to peak its international efficiency under current economic conditions. China will not remain a manufacturing economy forever. When export-based economic policy no longer supports the country the way it does now China will have to consider new ways to compete efficiently and effectively, and the best way (and currently only way) to do so is to enact free market economic policies. Establishing and continuing healthy economic competition (with reduction of protectionist barriers) will naturally drive China towards free market economics over time as China becomes dissatisfied with its socioeconomic disparities, low GDP-per capita, lack of economic diversification, and constant threat of unemployment-related unrest.

Henry Kissinger stated, “Lecturing a country with a history of millennia about its need to ‘grow up’ and behave ‘responsibly’ can be needlessly grating”. Including China in important international and regional decision making processes shows respect to Chinese policy makers and culture. China is attempting to assert new power domestically, regionally, and internationally. Though the US is concerned with China’s growing power and influence, America needs to realize the main challenge for China has been to maintain domestic stability while simultaneously maintaing sustainable economic development. By respecting Chinese sovereignty and withholding from direct intervention and overly-aggressive assertion, Chinese policy makers are less likely to become defensive. China is intent on showing the world its strength and capability as an important and powerful international and regional actor. Allowing China to develop respect will give America a long-term edge in policy making. The US does need to constantly voice its stance on human rights, economic development, and democratization, though. Failing to maintain its stance would render the US as weak/defeated in Chinese eyes.

DECISION EXPLANATION/RATIONALE

China does not desire poor relations with the United States. Both the US and China want good, stable relations that maximize the capabilities of the two states to seek their own interests while allowing a degree of economic, political, and social cooperation to exist. However America is the regional hegemon. China seeks to displace America. In seeking to displace America, China will resist American influence.

There is a common Chinese perception that the US is damaged/weakening while China is growing and becoming stronger. China will do anything to prevent itself from appearing weak, influenceable, and without regional/international political, economic, and social clout. Therefore, the US should refrain from attempting to directly influence and intervene in Chinese policy as this will only galvanize Chinese self-inflated power and make current and future cooperation more difficult. China will not accept foreign ideas, suggestions, or demands as this would make it look inferior to and impressionable by foreign states. If the US wants to change China it needs to make China believe itself that US-desired reform is in its best interest.

The US needs to get China to come to democratization, free market capitalism, and associated levels of human rights on its own accord, as US intervention will only make these doctrines less attractive to Chinese policy makers. By cooperating on policy development, continuing economic competition, and respecting Chinese sovereignty (and dignity), the US puts itself in an advantageous long-term relations position.

Read the original post at bmseifert.com.

Russia’s hastily convened international conference in St. Petersburg next month is being billed as a last-ditch effort at superpower cooperation in defense of Earth against dangers from space.

But it cannot be overlooked that this conference comes in response to the highly controversial NATO anti-ballistic missile deployments in Eastern Europe. These seriously destabilizing, nuclear defenses are pretexted as a defense against a non-nuclear Iran. In reality, the western moves of anti-missile systems into Poland and Romania create a de facto nuclear first-strike capability for NATO, and they vacate a series of Anti-Ballistic Missile Treaties with the Russians that go back forty years.

Deeply distrustful of these new US and NATO nuclear first-strike capabilities, the Russians announced they will not attend NATO’s planned deterrence summit in Chicago this month. Instead, they are testing Western intentions with a proposal for cooperative project for near-space mapping, surveillance, and defense against Earth-crossing asteroids and other dangerous space objects.

The Russians have invited NATO members as well as forward-thinking space powers to a conference in June in Petrograd. The agenda: Planetary defense against incursions by objects from space. It would be a way of making cooperative plowshares from the space technologies of hair-trigger nuclear terror (2 minutes warning, or less, in the case of the Eastern European ABMs).

It’s an offer the US and other space powers should accept.

It may be a point of little attention, as the millennium bug came with a lot of hoo-ha and went out with a whimper, but the impact it had on business was small because of all the hoo-ha, not in spite of it. And so it is with some concern that I consider operating system rollover dates as a potential hazard by software malfunction at major industrial operations such as nuclear power stations and warhead controls, which in worst case scenario, could of course have disastrous implications due to out-dated control systems.

The main dates of interest are 19 January 2038 by when all 32-bit Unix operating systems need to have been replaced by at least their 64-bit equivalents, and 17 Sept 2042 when IBM mainframes that use a 64-bit count need to be phased out.

Scare mongering? Perhaps not. While all modern facilities will have the superior time representation, I question if facilities built in the 70s and 80s, in particular those behind the old iron curtain were or ever will be upgraded. This raises a concern that for example the old soviet nuclear arsenal could become a major global threat within a few decades by malfunction if not decommissioned or control systems upgraded. It is one thing for a bank statement to print the date wrong on your latest bill due to millennium bug type issues, but if automated fault tolerance procedures have coding such as ‘if(time1 > time2+N) then initiate counter-measures’ then that is quite a different matter entirely.

I believe this is a topic which warrants higher profile lest it be forgot. Fortunately the global community has a few decades on its hands to handle this particular issue, though all it takes is just one un-cooperative facility to take such a risk rather than perform the upgrades necessary to ensure no such ‘meltdowns’ occur. Tick-tock, tick-tock, tick-tock…

I am taking the advice of a reader of this blog and devoting part 2 to examples of old school and modern movies and the visionary science they portray.

Things to Come 1936 — Event Horizon 1997
Things to Come was a disappointment to Wells and Event Horizon was no less a disappointment to audiences. I found them both very interesting as a showcase for some technology and social challenges.… to come- but a little off the mark in regards to the exact technology and explicit social issues. In the final scene of Things to Come, Raymond Massey asks if mankind will choose the stars. What will we choose? I find this moment very powerful- perhaps the example; the most eloguent expression of the whole genre of science fiction. Event Horizon was a complete counterpoint; a horror movie set in space with a starship modeled after a gothic cathedral. Event Horizon had a rescue crew put in stasis for a high G several month journey to Neptune on a fusion powered spaceship. High accelleration and fusion brings H-bombs to mind, and though not portrayed, this propulsion system is in fact a most probable future. Fusion “engines” are old hat in sci-fi despite the near certainty the only places fusion will ever work as advertised are in a bomb or a star. The Event Horizon, haunted and consigned to hell, used a “gravity drive” to achieve star travel by “folding space.” Interestingly, a recent concept for a black hole powered starship is probably the most accurate forecast of the technology that will be used for interstellar travel in the next century. While ripping a hole in the fabric of space time may be strictly science fantasy, for the next thousand years at least, small singularity propulsion using Hawking radiation to achieve a high fraction of the speed of light is mathematically sound and the most obvious future.

https://lifeboat.com/blog/2012/09/only-one-star-drive-can-work-so-far

That is, if humanity avoids an outbreak of engineered pathogens or any one of several other threats to our existence in that time frame.

Hand in hand with any practical method of journeys to other star systems in the concept of the “sleeper ship.” Not only as inevitable as the submarine or powered flight was in the past, the idea of putting human beings in cold storage would bring tremendous changes to society. Suspended animation using a cryopreservation procedure is by far the most radical and important global event possible, and perhpas probable, in the near future. The ramifications of a revivable whole body cryopreservation procedure are truly incredible. Cryopreservation would be the most important event in the history of mankind. Future generations would certainly mark it as the beginning of “modern” civilization. Though not taken seriously anymore than the possiblility of personal computers were, the advances in medical technology make any movies depicting suspended animation quite prophetic.

The Thing 1951/Them 1954 — Deep Impact 1998/Armegeddon 1998
These four movies were essentially about the same.…thing. Whether a space vampire not from earth in the arctic, mutated super organisms underneath the earth, or a big whatever in outer space on a collision course with earth, the subject was a monstrous threat to our world, the end of humankind on earth being the common theme. The lifeboat blog is about such threats and the The Thing and Them would also appeal to any fan of Barbara Ehrenreich’s book, Blood Rites. It is interesting that while we appreciate in a personal way what it means to face monsters or the supernatural, we just do not “get” the much greater threats only recently revealed by impact craters like Chixculub. In this way these movies dealing with instinctive and non-instinctive realized threats have an important relationship to each other. And this connection extends to the more modern sci-fi creature features of past decades. Just how much the The Thing and Them contributed to the greatest military sci-fi movie of the 20th century (Aliens, of course) will probably never be known. Director James Cameron once paid several million dollars out of court to sci-fi writer Harlan Ellison after admitting during an interview to using Ellison’s work- so he will not be making that mistake again. The second and third place honors, Starship Troopers and Predator, were both efforts of Dutch Film maker Paul Verhoeven.

While The Thing and Them still play well, and Deep Impact, directed by James Cameron’s ex-wife, is a good flick and has uncanny predictive elements such as a black president and a tidal wave, Armegeddon is worthless. I mention this trash cinema only because it is necessary for comparison and to applaud the 3 minutes when the cryogenic fuel transfer procedure is seen to be the farce that it is in actuality. Only one of the worst movie directors ever, or the space tourism industry, would parade such a bad idea before the public.
Ice Station Zebra 1968 — The Road 2009
Ice Station Zebra was supposedly based on a true incident. This cold war thriller featured Rock Hudson as the penultimate submarine commander and was a favorite of Howard Hughes. By this time a recluse, Hughes purchased a Las Vegas TV station so he could watch the movie over and over. For those who have not seen it, I will not spoil the sabotage sequence, which has never been equaled. I pair Ice Station Zebra and The Road because they make a fine quartet, or rather sixtet, with The Thing/Them and Deep Impact/Armegeddon.

The setting for many of the scenes in these movies are a wasteland of ice, desert, cometoid, or dead forest. While Armegeddon is one of the worst movies ever made on a big budget, The Road must be one of the best on a small budget- if accuracy is a measure of best. The Road was a problem for the studio that produced it and release was delayed due to the reaction of the test audiences. All viewers left the theatre profoundly depressed. It is a shockingly realistic movie and disturbed to the point where I started writing about impact deflection. The connection between Armegeddon and The Road, two movies so different, is the threat and aftermath of an asteroid or comet impact. While The Road never specifies an impact as the disaster that ravaged the planet, it fits the story perfectly. Armegeddon has a few accurate statements about impacts mixed in with ludicrous plot devices that make the story a bad experience for anyone concerned with planetary protection. It seems almost blasphemous and positively criminal to make such a juvenile for profit enterprise out of an inevitable event that is as serious as serious gets. Do not watch it. Ice Station Zebra, on the other hand, is a must see and is in essence a showcase of the only tools available to prevent The Road from becoming reality. Nuclear weapons and space craft- the very technologies that so many feared would destroy mankind, are the only hope to save the human race in the event of an impending impact.

Part 3:
Gog 1954 — Stealth 2005
Fantastic Voyage 1966 — The Abyss 1989
And notable moments in miscellaneous movies.

Steamships, locomotives, electricity; these marvels of the industrial age sparked the imagination of futurists such as Jules Verne. Perhaps no other writer or work inspired so many to reach the stars as did this Frenchman’s famous tale of space travel. Later developments in microbiology, chemistry, and astronomy would inspire H.G. Wells and the notable science fiction authors of the early 20th century.

The submarine, aircraft, the spaceship, time travel, nuclear weapons, and even stealth technology were all predicted in some form by science fiction writers many decades before they were realized. The writers were not simply making up such wonders from fanciful thought or childrens ryhmes. As science advanced in the mid 19th and early 20th century, the probable future developments this new knowledge would bring about were in some cases quite obvious. Though powered flight seems a recent miracle, it was long expected as hydrogen balloons and parachutes had been around for over a century and steam propulsion went through a long gestation before ships and trains were driven by the new engines. Solid rockets were ancient and even multiple stages to increase altitude had been in use by fireworks makers for a very long time before the space age.

Some predictions were seen to come about in ways far removed yet still connected to their fictional counterparts. The U.S. Navy flagged steam driven Nautilus swam the ocean blue under nuclear power not long before rockets took men to the moon. While Verne predicted an electric submarine, his notional Florida space gun never did take three men into space. However there was a Canadian weapons designer named Gerald Bull who met his end while trying to build such a gun for Saddam Hussien. The insane Invisible Man of Wells took the form of invisible aircraft playing a less than human role in the insane game of mutually assured destruction. And a true time machine was found easily enough in the mathematics of Einstein. Simply going fast enough through space will take a human being millions of years into the future. However, traveling back in time is still as much an impossibillity as the anti-gravity Cavorite from the First Men in the Moon. Wells missed on occasion but was not far off with his story of alien invaders defeated by germs- except we are the aliens invading the natural world’s ecosystem with our genetically modified creations and could very well soon meet our end as a result.

While Verne’s Captain Nemo made war on the death merchants of his world with a submarine ram, our own more modern anti-war device was found in the hydrogen bomb. So destructive an agent that no new world war has been possible since nuclear weapons were stockpiled in the second half of the last century. Neither Verne or Wells imagined the destructive power of a single missile submarine able to incinerate all the major cities of earth. The dozens of such superdreadnoughts even now cruising in the icy darkness of the deep ocean proves that truth is more often stranger than fiction. It may seem the golden age of predictive fiction has passed as exceptions to the laws of physics prove impossible despite advertisments to the contrary. Science fiction has given way to science fantasy and the suspension of disbelief possible in the last century has turned to disappointment and the distractions of whimsical technological fairy tales. “Beam me up” was simply a way to cut production costs for special effects and warp drive the only trick that would make a one hour episode work. Unobtainium and wishalloy, handwavium and technobabble- it has watered down what our future could be into childish wish fulfillment and escapism.

The triumvirate of the original visionary authors of the last two centuries is completed with E.E. Doc Smith. With this less famous author the line between predictive fiction and science fantasy was first truly crossed and the new genre of “Space Opera” most fully realized. The film industry has taken Space Opera and run with it in the Star Wars franchise and the works of Canadian film maker James Cameron. Though of course quite entertaining, these movies showcase all that is magical and fantastical- and wrong- concerning science fiction as a predictor of the future. The collective imagination of the public has now been conditioned to violate the reality of what is possible through the violent maiming of basic scientific tenets. This artistic license was something Verne at least tried not to resort to, Wells trespassed upon more frequently, and Smith indulged in without reservation. Just as Madonna found the secret to millions by shocking a jaded audience into pouring money into her bloomers, the formula for ripping off the future has been discovered in the lowest kind of sensationalism. One need only attend a viewing of the latest Transformer movie or download Battlestar Galactica to appreciate that the entertainment industry has cashed in on the ignorance of a poorly educated society by selling intellect decaying brain candy. It is cowboys vs. aliens and has nothing of value to contribute to our culture…well, on second thought, I did get watery eyed when the young man died in Harrison Ford’s arms. I am in no way criticizing the profession of acting and value the talent of these artists- it is rather the greed that corrupts the ancient art of storytelling I am unhappy with. Directors are not directors unless they make money and I feel sorry that these incredibly creative people find themselves less than free to pursue their craft.

The archetype of the modern science fiction movie was 2001 and like many legendary screen epics, a Space Odyssey was not as original as the marketing made it out to be. In an act of cinema cold war many elements were lifted from a Soviet movie. Even though the fantasy element was restricted to a single device in the form of an alien monolith, every artifice of this film has so far proven non-predictive. Interestingly, the propulsion system of the spaceship in 2001 was originally going to use atomic bombs, which are still, a half century later, the only practical means of interplanetary travel. Stanly Kubrick, fresh from Dr. Strangelove, was tired of nukes and passed on portraying this obvious future.

As with the submarine, airplane, and nuclear energy, the technology to come may be predicted with some accuracy if the laws of physics are not insulted but rather just rudely addressed. Though in some cases, the line is crossed and what is rude turns disgusting. A recent proposal for a “NautilusX” spacecraft is one example of a completely vulgar denial of reality. Chemically propelled, with little radiation shielding, and exhibiting a ridiculous doughnut centrifuge, such advertising vehicles are far more dishonest than cinematic fabrications in that they decieve the public without the excuse of entertaining them. In the same vein, space tourism is presented as space exploration when in fact the obscene spending habits of the ultra-wealthy have nothing to do with exploration and everything to do with the attendent taxpayer subsidized business plan. There is nothing to explore in Low Earth Orbit except the joys of zero G bordellos. Rudely undressing by way of the profit motive is followed by a rude address to physics when the key private space scheme for “exploration” is exposed. This supposed key is a false promise of things to come.

While very large and very expensive Heavy Lift Rockets have been proven to be successful in escaping earth’s gravitational field with human passengers, the inferior lift vehicles being marketed as “cheap access to space” are in truth cheap and nasty taxis to space stations going in endless circles. The flim flam investors are basing their hopes of big profit on cryogenic fuel depots and transfer in space. Like the filling station every red blooded American stops at to fill his personal spaceship with fossil fuel, depots are the solution to all the holes in the private space plan for “commercial space.” Unfortunately, storing and transferring hydrogen as a liquified gas a few degrees above absolute zero in a zero G environment has nothing in common with filling a car with gasoline. It will never work as advertised. It is a trick. A way to get those bordellos in orbit courtesy of taxpayer dollars. What a deal.

So what is the obvious future that our present level of knowledge presents to us when entertaining the possible and the impossible? More to come.

Abstract

American history teachers praise the educational value of Billy Joel’s 1980s song ‘We Didn’t Start the Fire’. His song is a homage to the 40 years of historical headlines since his birth in 1949.

Which of Joel’s headlines will be considered the most important a millennium from now?

This column discusses five of the most important, and tries to make the case that three of them will become irrelevant, while one will be remembered for as long as the human race exists (one is uncertain). The five contenders are:

The Bomb
The Pill
African Colonies
Television
Moonshot


Article

My previous column concentrated on the Hall Weather Machine[1], with a fairly technocentric focus. In contrast, this column is not technical at all, but considers the premise that if we don’t know our past, then we don’t know what our future will be.

American history teachers praise Billy Joel’s 1980s song ‘We Didn’t Start the Fire’ for its educational value. His song is a homage to the 40-years of historical headlines since his birth in 1949. Before reading further, go to http://yeli.us/Flash/Fire.html to hear it and to see the photographs that go with each phrase of the song.

Which of Joel’s headlines do you think will be most important, when considered by people a millennium from now? A thousand years is a long time.

Many of the popular figures Joel mentions from politics, entertainment, and sports have already begun to fade from living memory, so they are easy to dismiss. Similarly, which nation won which war will be remembered only by historians, though the genetic components of descendants affected by those wars will reverberate through the centuries. An interesting exercise would consider the most significant events of the eleventh century. English-speaking historians might mention the Battle of Hastings, but is Britain even a world power any longer? Where are the Byzantine, Ottoman, Toltec, and Holy Roman empires of a thousand years ago?

Note that there may be a difference between what most people 1,000 years from now will consider to be the most important and what may actually be the most important. In this case, just because the empires mentioned above are gone doesn’t necessarily mean they didn’t have a significant role in creating our present and our future — we may simply be unconscious of their effect.

I will consider a few possibilities before arguing for one headline that is certain to be remembered, rightfully so, ten thousand years from now — if not longer.


The Bomb

First, most thoughtful people would include the hydrogen-bomb. A few decades ago, almost everyone would have agreed wholeheartedly. At that time, the policy of Mutual Assured Destruction hung heavily over every life in the USSR and the United States (if not the world). With the USSR now gone, and Russia and USA not quite at each others throats, the danger from extinction via a full-out nuclear exchange may be lower. However, the danger of a nuclear attack that kills a few million people is actually more likely.

Up till now, for a nation to become a great power and thereby wield great influence, it needed the level of organization that depended on civilization. No matter how brutal their government or culture — such as Nazi Germany, Communist Soviet Union, or Ancient Rome — their organization depended on efficient education, competent administration, large-scale engineering, and the finer things in life — to motivate at least the elite. Even then, some of the benefit would trickle down as “a rising tide raises all boats”. Competent and educated slaves were a key to Roman Civilization, just as educated bureaucrats were essential to the Nazi and Soviet systems.

Now, however, we are getting into a situation in which atomic weapons give the edge to the stark-raving mad — anyone who is willing to use them. This situation could be most destructive to prosperous, open, humanistic, and civilized nations, because they may be less willing to give up their comfort and freedom to defend against this threat. It appears very likely that within a decade or less, any ragtag collection of pip-squeak lunatics will be able to level the greatest city on Earth, even if it is defended by the world’s strongest army. This is because the advances in nuclear enrichment technology (along with all technology) will make it easier for pip-squeak lunatics to acquire or manufacture nuclear bombs.

That being said, however, it is also true that really advanced technology — specifically privacy-invasive information technology, perhaps in the form of throwaway supercomputers in a massive network of dustcams — might stop the pip-squeak lunatics before they can build and deploy their nuclear bombs.

In addition, another decade of technological development will result in nanobots. By the way, this isn’t just my prediction (the defense of which is a subject of a future column), but also the opinion of inventive dreamers such as Raymond Kurzweil, and of conservative achievers such as Lockheed executives. The development of nanobots means that cellular repair of radiation damage may also become possible (though the problems of controlling trillions of nanobots and of how to detect and repair radiation damage are additional separate and very difficult engineering and biological issues). Michael Flynn examined some of the nuclear strategic issues of this nanotech application in his short story “Washer at the Ford”.[2]

The problem is that there may be a five year window during which our only defense against nuclear-bomb-wielding pip-squeak lunatics will be privacy-invasive information technology, run by the FBI, NSA, and CIA, and their counterparts around the world. Yes, you should be worried, but probably not for the reasons you may think. The danger is not as much that these government agencies may infringe on your rights, but that the very nature of their jobs means that they won’t be able to apply Kranstowitz’s weapon of openness[3] against those who want us dead. To make matters worse, the U.S. intelligence agencies will likely follow the complex laws[3] that protect the privacy of U.S. persons[4] — to the exclusion of catching the nuclear lunatics. This is one reason that FBI, NSA, and CIA directors get new gray hairs every night.

Another problem is that the pip-squeak lunatics will also be able to buy cheap, privacy-invasive information (and other) technologies. Petro-dollars, peasant-made knickknacks, and mining rights have given ethically-challenged individuals in third-world countries astonishing wealth. Many of the world’s richest men live in the world’s poorer countries.[5] They have also learned cruel and clever means by which to keep their peasants down. The question is whether or not they can run the expensive technology they bought with their wealth and power. Buying cheap technology is one thing, but controlling it requires skilled people, and skilled people are more difficult to control. Can the dictators keep a small cadre of trusty elites to run the technology? North Korea and Iran are interesting (and rather scary) test cases at the moment.

Another wild card is that while some dictatorships have become more totalitarian, there comes a point at which the downtrodden peasants (and students, and factory workers, and shopkeepers) don’t have anything to lose but their miserable lives. Meanwhile, totalitarian governments can’t keep up with technology as quickly as free ones can. This is when the system collapses of its own weight, and that is what happened to the USSR. The cell phone, Facebook, and Twitter-fed revolutions in Egypt, Libya, Syria, and elsewhere also seem to prove this point. Thus far, the Chinese leaders have been smart enough to adapt their economy without adapting their government. The jury is still out as to what will happen to them next (it may not be pretty for us if it ends badly, and there are many ways it can end badly).

Another wild card to consider is that most of the existing nuclear warheads are in the United States, Russia, and China. Americans conveniently forget, but non-Americans are very aware that the United States is (thus far) the only nation that has actually used an atomic bomb to kill people. On the other hand, America doesn’t have highly corrupt officials in charge of our nuclear arsenal (Pakistan), nor is it controlled by a near-dictator (Russia), nor by a totalitarian crazed nut-job (North Korea). In addition, a number of important Japanese leaders have publicly said that that controversial decision to bomb Hiroshima and Nagasaki was the correct one–“It could not be helped.“[6] A similar case might be made for Israel, which is surrounded by overwhelming numbers of Arab nations. Given the tensions in the area, a preemptive strike by Israel seems possible, if not likely. The important question then becomes: Under what grounds, if any, could such usage be justified? Of course, Iranian and other Arab leaders have often called for the total destruction of Israel, and eventually one of them may be willing to try it. On what grounds could they be justified?

Another issue is that once we lose New York or some other major city, Americans will accept any solution — including a totalitarian police state. So will the people of other democratic republics if they lose a major city to nuclear terrorists. But the solution is not necessarily a police state. David Brin has answered the “who guards the guardians” question with a clever answer: “We all do.” Over-simplified, his solution is to kiss most of your privacy goodbye. Either that or kiss your life, your liberty, and property, and your privacy all goodbye. Brin proposes that we should all submit to being on camera most of the time — as long as the camera essentially points both ways so we know who is watching us — i.e. the police, our neighbors, the pervert three blocks away, and our governments will know that we are watching them too. We must all shoulder the responsibility of policing our neighborhoods and our governments. The world will be like big village in which everyone knows everyone else’s business, but it’s OK because we are all accountable for our actions. Given the fact that human beings only behave when held accountable, it is the only real solution.[7]

Some may think it naive to expect that governments would ever allow their citizens to observe them in return for their observing us. On the other hand, between the increasing calls for government transparency, and the fact that even the chief of the IMF can be taken down by an lowly maid (with the help of the rule of law), there is hope. Not only that, but many of us have already given away much of our privacy on Facebook and YouTube. Don’t worry about it. Maybe I’m still a wide-eyed optimist, but look at the fall of the USSR empire. Nobody with two brain cells to rub together could have possibly predicted that it could have been so bloodless.

DARPA will certainly look for technological answers for nuclear bomb-related problems such as the nightmare of screening shipping containers. They will probably find some solutions, but during the critical transition phase towards productive nanosystems, will they be able to make those solutions affordable?

One nanotech solution to stopping nuclear bombs that are hidden in shipping containers is to stop all physical shipping altogether and just trade files over the internet, printing whatever you want on our desktops (BTW, you can build a very large printer in two steps). Our only problem then would be keeping our computer virus detectors up to date so that we don’t print something nasty.

To summarize, if anybody is around 1,000 years from now, then the nuclear bomb will not be considered an important issue.


The Pill

The second historically consequential development in the past 50 years that many people will propose as significant is the contraceptive pill.

Some claim that the Pill is necessary because we have a population problem. When I was in college in the 1970’s, it was “proven” to me, with the aid of computer models, that overpopulation was going to be the reason we were going to have food riots in the United States by 1985. So naturally, I’m as skeptical about overpopulation as I am about the imminent rapture. Everyone probably agrees that overpopulation results when the population exceeds the sustainable carrying capacity of the environment. But what determines that capacity? Technology multiplies it while ignorance, injustice, and war decrease it. On Earth today, there is currently no correlation between standard of living and population density.[8]

That being said, in a closed system, unlimited human population growth could result in a situation worse than simple human extinction. Natural ecosystems have population boom/crash cycles all the time, but other species don’t have access to nuclear bombs and other devices that can obliterate habitats. The overpopulation disaster on Easter Island occurred with a primitive culture. It still has grass, but not much of an ecosystem. Imagine what could have happened with modern technology.

The Pill fundamentally changed the relationship of men and women, the place of children in a family and, on the macro level, population dynamics. The family is the basic building block of society and civilization, not only because it is an economic unit (you don’t pay your spouse to wash the dishes or take out the garbage), but more importantly, because the family critically shapes the next generation. Therefore, a large change in family structures will have far-reaching effects, at least in the “short run” of five to ten generations. However, to steal from Jerry Pournell and Larry Niven: “Think of it as evolution in action.“[9] The people who embrace contraception as a path to “the good life” will (evolutionarily speaking) remove their vote for influencing their future within a few generations. It is true that for humans, memes may carry as much weight as genes, but the same process applies — as long as meme propagation is kept below a critical level, perhaps by co-traveling xenophobic memes. On the other hand, people who don’t have much of their material resources tied up in children may have more time to devote to meme propagation. However, many studies have shown than the people who have the greatest impact on teens and pre-teens are their parents.[10]

One possible result is that a millennium from now, the Pill will be a small blip, as inconsequential as the Shakers, and for essentially similar reasons. Nanotechnology-enabled life extension techniques will extend that blip for a while, but because the prolific pro-natalists will continue having even more children for their longer lives, more pro-natalists will be born to outvote the anti-natalists. This is why the Jewish Knesset now has a significantly higher percentage of Ultra-Orthodox than when it began,[11] why Utah’s government is almost 100% Mormon,[12] and why the Amish are one of the fastest growing minority in the world, with an average of 6.8 children per family.[13]

The opposing trend is controlled by a number of factors. First, the birth rate goes down as women’s educations go up. This occurs partially because practically speaking, it is more difficult to go to school while being married and raising children. More subtly, however, it is because school is an investment in learning a professional trade — it is a different investment than children. In addition, women and men are implicitly and explicitly taught that a better career is more important than raising more children.

The problem isn’t that women are being educated. The problem is that if they are taught something that results in the extinction of our egalitarian, humanistic, and liberal society by one that is misogynistic, xenophobic, and unjust, then something is wrong.

One weapon of the contraceptive culture is the reeducation of the pro-natalist’s children. Proponents of secularization would call this “giving people free access to all information” not “reeducation”. But when Bibles are banned from the classroom, and students are taught in many ways that they are just animals, it seems like imposition of a secular viewpoint. At least they could teach the debate — and at the end of the semester, the students could try to guess the teacher’s bias (if they can’t, then the teacher presented both views with equal force).

There are more than a million home-schooled children in the U.S., up to two-thirds of whom are there primarily because their parents fear the imposition of our government’s ideas on their children.[14] This quiet protest is so feared by governments that parents are prosecuted for doing this, not only in all totalitarian countries but even in some democratic nations.[15] The alternative is that the governments of open, liberal, and secularized nations (that accept contraception) will decide that the vote of the increasing minority is wrong. Could their right to vote be taken away? Of course it can; it has happened before.

A pessimistic view of this possibility of disenfranchisement is also supported by the prevalence of abortion in liberal democracies. Given the accuracy of ultrasound imagery, if we can ignore the right to life for our most innocent and helpless, then how safe is something as meager as the right to vote? Niemöller’s poem about trade unionists, Communists, and Catholics comes to mind.[16] So do the events in ancient Egypt, during the three or four hundred years between the famines that Joseph ameliorated (Genesis 50:22). The Egyptian upper class used contraception[17], and they felt threatened by the increasing numerical growth of the Jews, who had strict injunctions against it.

Is it good for our country that more than a million children are being taught by their parents? What if rebellious parents are teaching strange and dangerous ideas? How do we decide which ideas are dangerous? Do we censor and suppress them? After all, ideas have consequences.

The answer is that there are limits to what parents can do, but very few — if any — on what they teach. The whole point about freedom of religion is that we can believe what we want, as long as we do not destroy society or individuals with our actions. Our constitution was written not to limit individuals, but to put strict limits on government, since it is inherently more powerful.

The temptation to avoid having children is not limited to any particular culture. The reason is simple: raising children is an expensive, risky, and difficult investment. Parents must be willing to give up fancy vacations, luxury cars, time to themselves, a good night’s sleep, stress on their marriage, and many other things, thus weighing against the pro-natalist agenda. However, the culture that teaches that children are a blessing and a worthwhile investment instead of a cost will overcome those that do not — even if it tends to encourage people to be ignorant, misogynist, racist, and illogical (like two polygamist religions that start with the letter “M“[18]).

Cyril M. Kornbluth’s 1951 short story “The Marching Morons” illustrates another potential downside to the anti/pro-natalist issue by portraying a scenario in which selective pressure resulted in smart people breeding themselves out of existence. It also, despite the derogatory title, provides a warning: the originator of the “Final Solution” (placing all the fertile morons onto one-way rockets to nowhere) ends up screaming futilely as he himself is loaded on one of the last rockets. Kornbluth’s main premise seems logical. People are often willing to trade children for the better material things and higher standard of living, and those with more education are more willing to do so. But is the resulting cost to society worth it?

What will happen when productive nanosystems and advanced software lowers the price of goods and services to very low levels? Many other things will happen at the same time, but in a society of economic abundance, the expense of children will drop significantly — and will be limited only by attention span and desire (and possibly expanded by reproductive-enhancing technologies including parthenogenesis and male pregnancy). Is there a gene for liking children? Or is it a meme that is culturally transmitted? Evolution favors both. Of course, evolution may also favor a “Boys from Brazil“[19] scenario (in which numerous clones of a dictator are grown to reinstate his rule). This strategy may be successful as long as the clones survive to adulthood and can reproduce.

While a contraceptive culture is non-sustainable, especially in the face of a competing culture whose population is growing, it must be noted that a pro-natalist culture is also non-sustainable. Isaac Asimov pointed out that even if we could overcome all technological obstacles, any growth rate will eventually result in humanity becoming a big ball of flesh, expanding at the speed of light (BOFESOL, or BOF for short). At a modest 3% rate, we will reach the initial BOF in only 3,584 years. After that, the speed of light will limit growth.

However, the fact that a contraceptive culture is non-sustainable in a significantly shorter term than the pro-natalist one is why it makes sense for governments to support traditional religions in their efforts to maintain traditional morality and fertility. The difficult problem is finding ways to ensure the survival of a culture without it becoming xenophobic. This is difficult to do when we think that we have Absolute Truth and the One True Religion on our side. But then exactly how do we know that our particular set and ordering of values is the objectively correct one? Note that the denial of the existence of any objectively maximum set of values exists is itself a particular set of values. And note also that sustainability and tolerance are also values that, like all values, must be assumed because they cannot be proven.

Given the contradictory evidence and shifting values, it is likely that equilibrium between pro-natalist and contraceptive meme sets can never be reached. Instead, humanity will likely experience benign (and sometimes not-so benign) boom and crash cycles similar to those that natural ecosystems suffer from. Only for us, our cycles will be constrained by opinions and technological capabilities, not by predators.


African Colonies

A third historical event that may be of consequence a thousand years from now is “Belgians in the Congo”. The Belgian regime in the Congo was about as brutal and inhuman as any the Europeans imposed on its colonies. However, the European Empires spread Christianity in Africa — where it remains a fast-growing religion. This African event may be as significant as when the Spanish and Portuguese spread Christianity in Latin America, and will bring about a fundamentally different world than if Africa had gone Islamic, Hindu, or Confucian. Think of Latin American worshiping the Aztec gods with human sacrifice, or the impact on us if it were an Islamic Civilization. We would live in a very different world.

Then again, Africa may still turn Islamic. After all, Islam generally values large families, just like the fast-growing Mormon and Amish religions do. On the other hand, when Muslims become secularized, they reduce the number of their offspring, just like secularized Christians do — hence their accompanying philosophies will suffer the same fate. The result will be that in order to survive in the long term, future generations must be hostile to secularization, and probably hostile to each other’s religious views also (not a pleasant thought, even if they do share many of the same values). Over the next thousand years, in view of the exponential increase in technological power, which viewpoint will win? The answer depends on science, theology, and demographics.

A handful of nominal Christians destroyed the Aztec civilization, not because of their technology (though that helped), but because the Aztec civilization was based on a great and powerful falsehood — that in order for the sun to rise every morning, human blood needed to be shed — thereby earning the hatred of the neighboring tribes whose blood it was that was usually shed. Islam is not as false as the Aztec religion — otherwise it would not have lasted this long. But the jury is still out on whether it can survive the extreme technological advancement that productive nanosystems will bring. Will fanatical Muslims be able to design and build the nanotech equivalent of 747 jets that they can fly into the skyscrapers of their enemies? Or will they just learn how to use it in unexpected and terrorizing ways? Given the high level of technological advancement in the Muslim empire a thousand years ago, the answer seems to be “yes” to both questions. However, Islam’s ultimate rejection of reason is its Achilles heel, and in the past it helped lead to the decline of the Ottoman Empire after its peak in the 1300s. This is because Islam’s idea of Allah’s absolute transcendence is incompatible with the idea that the universe is ordered and knowable. Psychologically, the problem is that if the universe is not ordered and knowable, then why bother learning and doing science? Meanwhile, Hinduism has many competing gods, and this leads (like in ordinary paganism) to its rejection of the logical principle of contradiction — without which science is impossible. Confucianism seems to be more a moral code than a religious one, so it seems that it could be accommodating to technology — but that didn’t seem to help its practitioners develop it before they collided with the West. Similarly with Buddhism. Meanwhile, the decadent West’s deconstructionism and nihilism is gnawing at its parent’s roots, rejecting reason and science as merely tools of power.

It can be claimed that religious views will keep changing and splitting into new orthodoxies. In that case, the result will be an ever-shifting field of populations and sub-populations with none winning out completely over the others. But as far as I can tell, neither Judaism, Catholicism, Buddhism, nor Islam have changed any of their core beliefs in the past few millennia. In contrast, the Mormons have changed a number of their major doctrines, and so have the Protestants. This does not bode well for their long-term survival as a coherent organization, though the Mormons do have their high fertility on their side.

At the moment, the whole world is copying the Christian-rooted West, as many of their scientific elite are educated in Europe and the United States. It is difficult to say to what extent they understand the philosophical underpinnings of science. When their own universities start to educate their elite, their cultural assumptions will probably displace the Judeo-Christian/Greek philosophy of the West. Then what? It depends if science, which is the foundation of technological superiority, is simply a cargo cult that works. My claim is that science will only continue working for more than a generation or two if its underlying assumptions come with it — that the universe is both ordered and knowable.

These Judeo-Christian assumptions are huge — though atheists, agnostics, and (maybe) Muslims and Buddhists should also be able to accept them. However, every scientist still faces the question of why the universe is ordered and knowable (and if you’re not constantly asking the next question, especially the “why” question, then you’re not a very good scientist). The theistic answer of design by creator[20] is not too far away from the assumption of an ordered and knowable universe, and from there, one begins skating very close to the concept that we are made “Imago Dei”–in God’s image. Some people think that there is too much hubris and ego to that belief, but you don’t see dolphins landing on the Moon, or chimpanzees creating great symphonies (or even bad rap).

“Imago Dei” is the most logical conclusion once we can explain why the universe is predictable and knowable. And being made in God’s image has other implications, especially in terms of our role in this universe. Most notably, it promotes the idea of human beings as powerful stewards of creation, as opposed to subservient subjects of Mother Nature, and it will pit Nietzschean Transhumanists and Traditional Catholics against Gaian environmentalists and National Park Rangers.


Television

Writing has been around for thousands of years, while the printing press has been around for almost 600. It would seem that the printing press was the one invention that, more than anything else, enabled the development of all subsequent inventions. Television could be considered an improvement over writing, and given that large amounts of video can be subject to slightly less interpretation than an equal amount of effort writing text, our descendants might get a better, more complete depiction of history than they could get from just text or physical artifacts. However, the television that Joel mentioned was controlled by the big three television networks. This was because the cost to entry was so high (currently from $200,000 to $13 million per episode). So the role of television of the 1960s was similar to the role of books in Medieval Europe, where the cost of a book was equivalent to the yearly salary of a well-educated person). For this reason, Joel’s headline will not be considered significant, though he was close.

He was close because television’s electronic video display offspring, the computer — especially when connected to form the Internet — will certainly be significant. It will be as significant as the nuclear bomb and the Pill combined, if and when Moore’s Law ushers in the Singularity. But Joel was writing a song, not engaging in future studies. We might as well criticize him for not mentioning the coining of the word “nanotechnology”.


Moonshot

A few of Billy Joel’s headlines may be remembered 1,000 years from now, but none mentioned so far will really be significant.

I would go out on a limb and say that other than the scientific and industrial revolutions, the American Constitution, and the virtual abolishment of slavery, little of consequence has happened in the last thousand years. There is, however, one significant event that happened in the 1400s. No, it’s not Spain kicking out the Muslims. It’s not even Admiral Zheng He, Admiral of China’s famed Dragon Fleet, sailing to Africa in the 1420s, though we’re getting warmer. As impressive as they were, Zheng’s voyages did not change the world. What did change the world was the tiny fleet of three ships that returned from the New World to Spain in 1492.

Apollo and Star Trek both pointed to the next and final frontier. It is true that little has happened in the American space program since Apollo, and with the retirement of the 1960s-designed Space Shuttle, even less is expected. This poor showing has occurred because the moon shot, as awe-inspiring as it was, was a political stunt funded for political reasons. The problem is that it didn’t pay for itself, and we therefore have a dismal space program. However, with communication, weather, and GPS satellites, we have a huge space industry. It’s all about the value added.

On the other hand, it’s the governmental space programs that seem to make the initial (and necessary) investments in the basic technology. More importantly, these programs give voice to that which makes us human — “to look at the stars and wonder”.[21]

Realistically, looking at the historical records of Jamestown and Salt Lake City, space development will occur when prosperous upper class families can sell their homes and businesses to buy a one-way ticket and homesteading tools. In today’s money, that would be about one or two million dollars. We have a long way to go to achieve that price break, though it helps that Moore’s Law is exponential.

There have only been a dozen men on the Moon so far, but Neil Armstrong will be remembered far longer than anyone else in this millennium. After the human race has spread throughout the solar system, and after it starts heading for the stars, everyone will remember who took the first small step. The importance of this step will become obvious after the Google Moon prize is won, and after Elon Musk and his imitators demonstrate conclusively that we are no longer in a zero sum game.

That is something to look forward to.

Tihamer Toth-Fejel is Research Engineer at Novii Systems.


Acknowledgments

Many thanks to Andrew Balet, Bill Bogen, Tim Wright, and Ted Reynolds for their significant contributions to this column.


Footnotes

1. Tihamer Toth-Fejel, The Politics and Ethics of the Hall Weather Machine, https://lifeboat.com/blog/2010/09/the-politics-and-ethics-of-the-hall-weather-machine and http://www.nanotech-now.com/columns/?article=486
2. Michael Flynn, Washer at the Ford, Analog, v109 #6 & 7, June & July 1989.
3. Arthur Kantrowitz, The Weapon of Openness, http://www.foresight.org/Updates/Background4.html
4. United States Signals Intelligence Directive 18, 27 July 1993, http://cryptome.org/nsa-ussid18.htm
5. e.g. Mexico, India, Saudia Arabia, and Russia http://www.forbes.com/lists/2010/10/billionaires-2010_The-Worlds-Billionaires_Rank.html Also, the petro-dollar millionaires in the Mideast http://www.aneki.com/millionaire_density.html
6. There is an interesting discussion at http://en.wikipedia.org/wiki/Debate_over_the_atomic_bombings_of_Hiroshima_and_Nagasaki
7. David Brin,The Transparent Society, Basic Books (1999). For a quick introduction, see The Transparent Society and Other Articles about Transparency and Privacy, http://www.davidbrin.com/transparent.htm.
8. Tihamer Toth-Fejel, Population Control, Molecular Nanotechnology, and the High Frontier, The Assembler, Volume 5, Number 1 & 2, 1997 http://www.islandone.org/MMSG/9701_05.html#_Toc394339700
9. Larry Niven and Jerry Pournelle, Oath of Fealty. New York : Pocket Books, 1982
10. KIDS COUNT Indicator Brief, Reducing the Teen Birth Rate, July 2009. http://www.aecf.org/~/media/Pubs/Initiatives/KIDS%20COUNT/K/KIDSCOUNTIndicatorBriefReducingtheTeenBirthRa/Corrected%20teen%20birth%20brief.pdf
11. From a small group of just four members in the 1977 Knesset, they gradually increased their representation to 22 (out of 120) in 1999 (http://en.wikipedia.org/wiki/Haredi_Judaism). The fertility rate for ultra-Orthodox mothers greatly exceeds that of the Israeli Jewish population at large, averaging 6.5 children per mother in the ultra-Orthodox community compared to 2.6 among Israeli Jews overall (http://www.forward.com/articles/7641/ ).
12. As of mid-2001, the Governor of Utah, and all of its Federal senators, representatives and members of the Supreme Court are all Mormon. http://www.religioustolerance.org/lds_hist1.htm
13. Julia A. Ericksen; Eugene P. Ericksen, John A. Hostetler, Gertrude E. Huntington. “Fertility Patterns and Trends among the Old Order Amish”. Population Studies (33): 255–76 (July 1979).
14. 1.1 Million Homeschooled Students in the United States in 2003. http://nces.ed.gov/nhes/homeschool/
15. HOMESCHOOLING: Prosecution is waged abroad; troubling trends abound in US http://www.bpnews.net/BPnews.asp?ID=34699
16. http://timpanogos.wordpress.com/2010/02/26/quote-of-the-moment-martin-niemoller-i-did-not-speak-out/
17. http://www.patentex.com/about_contraception/journey.php
18. I should note that almost all of the people I have personally known from these two religions are trustworthy, intelligent, and a pleasure to meet. Despite what they are taught in their sacred texts.
19. Ira Levin, Boys from Brazil, Dell (1977)
20. There are many question to follow. How did He do it? Why is He masculine? Why did He do it? How do we know? That last question is especially relevant.
21. Guy J. Consolmagno, Brother Astronomer: Adventures of a Vatican Scientist, McGraw-Hill (2001)

Perhaps the most important lesson, which I have learned from Mises, was a lesson located outside economics itself. What Mises taught us in his writings, in his lectures, in his seminars, and in perhaps everything he said, was that economics—yes, and I mean sound economics, Austrian economics—is primordially, crucially important. Economics is not an intellectual game. Economics is deadly serious. The very future of mankind —of civilization—depends, in Mises’ view, upon widespread understanding of, and respect for, the principles of economics.

This is a lesson, which is located almost entirely outside economics proper. But all Mises’ work depended ultimately upon this tenet. Almost invariably, a scientist is motivated by values not strictly part of the science itself. The lust for fame, for material rewards—even the pure love of truth—these goals may possibly be fulfilled by scientific success, but are themselves not identified by science as worthwhile goals. What drove Mises, what accounted for his passionate dedication, his ability to calmly ignore the sneers of, and the isolation imposed by academic contemporaries, was his conviction that the survival of mankind depends on the development and dissemination of Austrian economics…

Austrian economics is not simply a matter of intellectual problem solving, like a challenging crossword puzzle, but literally a matter of the life or death of the human race.

–Israel M. Kirzner, Society for the Development of Austrian Economics Lifetime Achievement Award Acceptance Speech, 2006

Dear Lifeboat Foundation family & friends,

This 243-page thesis and this 16-page executive summary deliver a tenable, game-theoretical solution to this complex global dilemma:

Our narrative tables evolutionarily stable strategy for the problem of sustainable economic development on earth and other earth-like planets. In order to accomplish the task at hand with so few words, we hit the ground running with an exploration of Bertrand Russell’s conjecture that economic power is a derivative function of military power. Next we contextualize the formidable obstacle presented of teleological thinking. Third, we introduce Truly Non-cooperative Games – axioms and complimentary negotiation models developed to analyze a myriad of politico-economic problems, including the problem of sustainable economic development. Here we present The Principle of Relative Insularity, a unified theory of value which unites economics, astrophysics, and biology. Finally, we offer a synthetic narrative in which we explore several crucial logical implications that follow from our findings.

Those interested in background details and/or a deeper exploration of the logical implications that follow from this theoretical development may wish to pursue a few pages of an comprehensive, creative, and thoroughly exhaustive letter of introduction to this abridged synthesis: The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth.

Those interested in considering how this game-theoretical solution informs “evolutionarily stable” investment strategy may also wish to take in a brief overview of my PhD research: On the Problem of Modern Portfolio Theory: In Search of a Timeless & Universal Investment Perspective.

Please feel free to post all thoughts, comments, criticisms, and suggestions.

Thanks for reading!

Sincerely,

Matt Funk, FLS, BSc, MA, MFA, PhD Candidate, University of Malta, Department of Banking & Finance

PS: The author would like to thank the Lifeboat Foundation, Linnean Society of London, Property and Environment Research Center, Society for Range Management, Professors Kurial, Nagarajan, Baldacchino, Fielding, Falzon (University of Malta), Lockwood (University of Wyoming), MacKinnon (Memorial University), Sloan (Lancaster University), McKenna (Notre Dame), Schlicht (Ludwig-Maximilians- Universität München) and his dedicated team at MPRA, author & astronomer Jeff Kanipe, Dr Willard S. Boyle, Dr John Harris, fellow students, family, and friends for their priceless guidance, support, and encouragement. He also sends out a very special thanks to Professors Frey (Universität Zürich), Selten (Universität Bonn), and Nash (Princeton University) for their originality, independence, and inspiration.

A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

Posted in asteroid/comet impacts, biological, complex systems, cosmology, defense, economics, existential risks, geopolitics, habitats, human trajectories, lifeboat, military, philosophy, sustainabilityTagged , , , , , , , , , , , | 2 Comments on A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

(NOTE: Selecting the “Switch to White” button on the upper right-hand corner of the screen may ease reading this text).

“Who are you?” A simple question sometimes requires a complex answer. When a Homeric hero is asked who he is.., his answer consists of more than just his name; he provides a list of his ancestors. The history of his family is an essential constituent of his identity. When the city of Aphrodisias… decided to honor a prominent citizen with a public funeral…, the decree in his honor identified him in the following manner:

Hermogenes, son of Hephaistion, the so-called Theodotos, one of the first and most illustrious citizens, a man who has as his ancestors men among the greatest and among those who built together the community and have lived in virtue, love of glory, many promises of benefactions, and the most beautiful deeds for the fatherland; a man who has been himself good and virtuous, a lover of the fatherland, a constructor, a benefactor of the polis, and a savior.
– Angelos Chaniotis, In Search of an Identity: European Discourses and Ancient Paradigms, 2010

I realize many may not have the time to read all of this post — let alone the treatise it introduces — so for those with just a few minutes to spare, consider abandoning the remainder of this introduction and spending a few moments with a brief narrative which distills the very essence of the problem at hand: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

But for those with the time and inclinations for long and windy paths through the woods, please allow me to introduce myself: I was born and raised in Kentland, Indiana, a few blocks from the train station where my great-great grandfather, Barney Funk, arrived from Germany, on Christmas day of 1859. I completed a BSc in Entrepreneurship and an MFA in film at USC, and an MA in Island Studies at UPEI. I am a naturalist, Fellow of The Linnean Society of London, PhD candidate in economics at the University of Malta, hunter & fisherman, NRA member, protective father, and devoted husband with a long, long line of illustrious ancestors, a loving mother & father, extraordinary brothers & sister, wonderful wife, beautiful son & daughter, courageous cousins, and fantastic aunts, uncles, in-laws, colleagues, and fabulous friends!

Thus my answer to the simple question, “Who are you?” requires a somewhat complex answer as well.

But time is short and I am well-positioned to simplify because all of the hats I wear fall under a single umbrella: I am a friend of the Lifeboat Foundation (where I am honoured to serve on the Human Trajectories, Economics, Finance, and Diplomacy Advisory Boards), a foundation “dedicated to encouraging scientific advancements while helping humanity survive existential risks.”

Almost everything I do – including the roles, associations, and relationships noted above, supports this mission.

It’s been nearly a year since Eric generously publish Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth, and since that time I have been fortunate to receive many interesting and insightful emails packed full of comments and questions; thus I would like to take this opportunity to introduce this work – which represents three years of research.

Those interested in taking the plunge and downloading the file above may note that this discourse

tables an evolutionarily stable strategy for the problem of sustainable economic development – on islands and island-like planets (such as Earth), alike, and thus this treatise yields, in essence, a long-term survival guide for the inhabitants of Earth.

Thus you may expect a rather long, complex discourse.

This is indeed what you may find – a 121 page synthesis, including this 1,233 page Digital Supplement.

As Nassim Nicholas Taleb remarked in Fooled by Randomness:

I do not dispute that arguments should be simplified to their maximum potential; but people often confuse complex ideas that cannot be simplified into a media-friendly statement as symptomatic of a confused mind. MBAs learn the concept of clarity and simplicity—the five-minute manager take on things. The concept may apply to the business plan for a fertilizer plant, but not to highly probabilistic arguments—which is the reason I have anecdotal evidence in my business that MBAs tend to blow up in financial markets, as they are trained to simplify matters a couple of steps beyond their requirement.

But there is indeed a short-cut — in fact, there are at least two short-cuts.

First, perhaps the most direct pleasant approach to the summit is a condensed, 237 page thesis: On the Problem of Sustainable Economic Development: A Game-Theoretical Solution.

But for those pressed for time and/or those merely interested in sampling a few short, foundational works (perhaps to see if you’re interested in following me down the rabbit hole), the entire theoretical content of this 1,354-page report (report + digital supplement) may be gleamed from 5 of the 23 works included within the digital supplement. These working papers and publications are also freely available from the links below – I’ll briefly relate how these key puzzle pieces fit together:

The first publication offers a 13-page over-view of our “problem situation”: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

Second is a 21-page game-theoretical development which frames the problem of sustainable economic development in the light of evolution – perhaps 70% of our theoretical content lies here: On the Truly Noncooperative Game of Life on Earth: In Search of the Unity of Nature & Evolutionary Stable Strategy.

Next comes a 113-page gem which attempts to capture the spirit and essence of comparative island studies, a course charted by Alexander von Humboldt and followed by every great naturalist since (of which, more to follow). This is an open letter to the Fellows of the Linnean Society of London, a comparative study of two, diametrically opposed economic development plans, both put into action in that fateful year of 1968 — one on Prince Edward Island, the other on Mustique. This exhaustive work also holds the remainder of the foundation for our complete solution to this global dilemma – and best of all, those fairly well-versed in game theory need not read it all, the core solution may be quickly digested on pages 25–51:
On the Truly Noncooperative Game of Island Life: Introducing a Unified Theory of Value & Evolutionary Stable ‘Island’ Economic Development Strategy.

Fourth comes an optional, 19-page exploration that presents a theoretical development also derived and illuminated through comparative island study (including a mini-discourse on methods). UPEI Island Studies Programme readers with the time and inclination for only one relatively short piece, this may be the one to explore. And, despite the fact that this work supports the theoretical content linked above, it’s optional because there’s nothing new here – in fact, these truths have been well known and meticulously documented for over 1,000 years – but it may prove to be a worthwhile, engaging, and interesting read nonetheless, because these truths have become so unfashionable that they’ve slipped back into relative obscurity: On the Problem of Economic Power: Lessons from the Natural History of the Hawaiian Archipelago.

And finally I’ll highlight another optional, brief communique – although this argument may be hopelessly compressed, here, in 3 pages, is my entire solution:
Truly Non-Cooperative Games: A Unified Theory.

Yes, Lifeboat Foundation family and friends, you may wish to pause to review the abstracts to these core, foundational works, or you may even wish to review them completely and put the puzzle pieces together yourself (the pages linked above total 169 – or a mere 82 pages if you stick to the core excerpt highlighted in my Linnean Letter), but, as the great American novelist Henry Miller remarked:

In this age, which believes that there is a short cut to everything, the greatest lesson to be learned is that the most difficult way is, in the long run, the easiest.

Why?

That’s yet another great, simple question that may require several complex answers, but I’ll give you three:

#1). First and foremost, because explaining is a difficult art.

As Richard Dawkins duly noted:

Explaining is a difficult art. You can explain something so that your reader understands the words; and you can explain something so that the reader feels it in the marrow of his bones. To do the latter, it sometimes isn’t enough to lay the evidence before the reader in a dispassionate way. You have to become an advocate and use the tricks of the advocate’s trade.

Of course much of this depends upon the reader – naturally some readers may find that less (explanation) is more. Others, however, may find benefit from reading even more (more, that is, than my report and the digital supplement). You may find suggested preliminary and complimentary texts in the SELECTED BIBLIOGRAPHY (below). The report itself includes these and many more. In short, the more familiar readers may be with some or all of these works, the less explaining they may require.

#2). No matter how much explaining you do, it’s actually never enough, and, as Abraham Lincoln wisely noted at Gettysburg, the work is never done. For more one this important point, let’s consider the words of Karl Popper:

When we propose a theory, or try to understand a theory, we also propose, or try to understand, its logical implications; that is, all those statements which follow from it. But this… is a hopeless task: there is an infinity of unforeseeable nontrivial statements belonging to the informative content of any theory, and an exactly corresponding infinity of statements belonging to its logical content. We can therefore never know or understand all the implications of any theory, or its full significance.
This, I think, is a surprising result as far as it concerns logical content; though for informative content it turns out to be rather natural…. It shows, among other things, that understanding a theory is always an infinite task, and that theories can in principle be understood better and better. It also shows that, if we wish to understand a theory better, what we have to do first is to discover its logical relation to those existing problems and existing theories which constitute what we may call the ‘problem situation’.
Admittedly, we also try to look ahead: we try to discover new problems raised by our theory. But the task is infinite, and can never be completed.

In fact, when it comes right down to it, my treatise – in fact, my entire body of research, is, in reality, merely an exploration of the “infinity of unforeseeable nontrivial statements belonging to the informative content” of the theory for which Sir Karl Popper is famous: his solution to David Hume’s problem of induction (of which you’ll hear a great deal if you brave the perilous seas of thought in the works introduced and linked herewith).

#3). Okay, this is a tricky one, but here it goes: Fine, a reasonable skeptic may counter, I get it, it’s hard to explain and there’s a lot of explaining to do – but if 100% of the theoretical content may be extracted from less than 200 pages, then doesn’t that mean you could cut about 1,000 pages?

My answer?

Maybe.

But then again, maybe not.

The reality of the situation is this: neither I nor anyone else can say for sure – this is known as the mind-body problem. In essence, given the mind-body problem, not only am I unable to know exactly how to explain something I know, moreover, I’m not even able to know how it is that I know what I know. I’m merely able to guess. Although this brief introduction is not the proper time nor place to explore the contents of this iteration of Pandora’s Box, those interested in a thorough exploration of this particular problem situation would be well-served with F.A. von Hayek’s The Sensory Order: An Inquiry into the Foundations of Theoretical Psychology (1952). But, in short, the bulk of the Digital Supplement and much of the report itself is merely an attempt to combat the mind-body problem – an attempt to put down as much of the history (and methodology) of this theoretical development as possible. As Descartes remarked at the outset of a treatise on scientific method:

This Tract is put forth merely as a history, or, if you will, as a tale, in which, amid some examples worthy of imitation, there will be found, perhaps, as many more which it were advisable not to follow, I hope it will prove useful to some without being hurtful to any, and that my openness will find some favor with all.

Perhaps you may grasp my theoretical development – but perhaps you may grasp it in a matter by which I did not intend for you to grasp it – perhaps I had stumbled upon a truth in another work within my digital supplement that may make it all clear. Or, perhaps I’ve got it all wrong, and perhaps you – by following in my footsteps through the historical course of this theoretical development (faithfully chronicled in the digital supplement) – may be able to help show me my error (and then, of course we may both rejoice); Malthus felt likewise:

If [the author] should succeed in drawing the attention of more able men to what he conceives to be the principal difficulty in… society and should, in consequence, see this difficulty removed, even in theory, he will gladly retract his present opinions and rejoice in a conviction of his error.

Anticipating another point regarding style: This report is very, very unusual insofar as style is concerned. It’s personal, highly opinionated, and indulges artistic license at almost every turn in the road. In fact, you may also find this narrative a touch artistic – yet it’s all true. As Norman Maclean remarked in A River Runs Trough It, “You like to tell true stories, don’t you?’ he asked, and I answered, ‘Yes, I like to tell stories that are true.’”

I like to tell stories that are true, too, and if you like to read them, then this epic journey of discovery may be for you. I speak to this point at length, but, in short, I submit that there is a method to the madness (in fact, the entire report may also be regarded as an unusual discourse on method).

Why have I synthesized this important theoretical development in an artistic narrative? In part, because Bruno Frey (2002) clearly stated why that’s the way it should be.

But I also did so in hopes that it may help readers grasp what it’s really all about; as the great Russian-American novelist Ayn Rand detailed:

Man’s profound need of art lies in the fact that his cognitive faculty is conceptual, i.e., that he acquires knowledge by means of abstractions, and needs the power to bring his widest metaphysical abstractions into his immediate, perceptual awareness. Art fulfills this need: by means of a selective re-creation, it concretizes man’s fundamental view of himself and of existence. It tells man, in effect, which aspects of his experience are to be regarded as essential, significant, important. In this sense, art teaches man how to use his consciousness.

Speaking of scientific method: I have suggested that my curiously creative narrative may offer some insight into the non-existent subject of scientific method — so please download for much more along these lines — but I want to offer an important note, especially for colleagues, friends, students, and faculty at UPEI: I sat in on a lecture last winter where I was surprised to learn that “island studies” had been recently invented by Canada research chair – thus I thought perhaps I should offer a correction and suggest where island studies really began:

Although it is somewhat well known that Darwin and Wallace pieced the theory of evolution together independently, yet at roughly the same time – Wallace, during his travels through the Malay archipelago, and Darwin, during his grand circumnavigation of the island of Earth onboard the Beagle (yes, the Galapagos archipelago played a key role, but perhaps not as important as has been suggested in the past). But what is not as commonly know is that both Darwin and Wallace had the same instructor in the art of comparative island studies. Indeed, Darwin and Wallace both traveled with identical copies of the same, treasured book: Alexander von Humboldt’s Personal Narrative of Travels to the Equinoctial Regions of the New Continent. Both also testified to the fundamental role von Humboldt played by inspiring their travels and, moreover, developing of their theories.

Thus, I submit that island studies may have been born with the publication of this monumental work in 1814; or perhaps, as Berry (2009) chronicled in Hooker and Islands (see SELECTED BIBLIOGRAPHY, below), it may have been Thomas Pennant or Georg Forster:

George Low of Orkney provided, together with Gilbert White, a significant part of the biological information used by pioneering travel writer Thomas Pennant, who was a correspondent of both Joseph Banks and Linnaeus [Pennant dedicated his Tour in Scotland and Voyage to the Hebrides (1774–76) to Banks and published Banks’s description of Staffa, which excited much interest in islands; Banks had travelled with James Cook and visited many islands; Georg Forster, who followed Banks as naturalist on Cook’s second voyage inspired Alexander Humboldt, who in turn Darwin treated as a model.

But whomever it may have been — or whomever you may ultimately choose to follow — Humboldt certainly towers over the pages of natural history, and Gerard Helferich’s Humboldt’s Cosmo’s: Alexander von Humboldt and the Latin American Journey that Changed the WayWe See the World (2004) tells Humboldt’s story incredibly well. This treasure also happens to capture the essence of Humboldt’s method, Darwin’s method, Wallace’s method, Mayr’s method, Gould’s method, and it most certainly lays out the map I have attempted to follow:

Instead of trying to pigeonhole the natural world into prescribed classification, Kant had argued, scientists should work to discover the underlying scientific principles at work, since only those general tenets could fully explain the myriad natural phenomena. Thus Kant had extended the unifying tradition of Thales, Newton, Descartes, et al.… Humboldt agreed with Kant that a different approach to science was needed, one that could account for the harmony of nature… The scientific community, despite prodigious discoveries, seemed to have forgotten the Greek vision of nature as an integrated whole.… ‘Rather than discover new, isolated facts I preferred linking already known ones together,’ Humboldt later wrote. Science could only advance ‘by bringing together all the phenomena and creations which the earth has to offer. In this great sequence of cause and effect, nothing can be considered in isolation.’ It is in this underlying connectedness that the genuine mysteries of nature would be found. This was the deeper truth that Humboldt planned to lay bare – a new paradigm from a New World. For only through travel, despite its accompanying risks, could a naturalist make the diverse observations necessary to advance science beyond dogma and conjecture. Although nature operated as a cohesive system, the world was also organized into distinct regions whose unique character was the result of all the interlocking forces at work in that particular place. To uncover the unity of nature, one must study the various regions of the world, comparing and contrasting the natural processes at work in each. The scientist, in other words, must become an explorer.

With these beautiful words in mind and the spirit of adventure in the heart, I thank you for listening to this long story about an even longer story, please allow me to be your guide through an epic adventure.

But for now, in closing, I’d like to briefly return to the topic at hand: human survival on Earth.

A few days ago, Frenchman Alain Robert climbed the world’s tallest building – Burj Khalifa – in Dubai.

After the six hour climb, Robert told Gulf News, “My biggest fear is to waste my time on earth.”

I certainly share Robert’s fear – Alexander von Humboldt, Darwin, and Wallace did, too, by the way.

But then Robert added, “To live, we don’t need much, just a roof over our heads some food and drink and that’s it … everything else is superficial.”

I’m afraid that’s where Robert and I part ways – and if you would kindly join me on a journey through The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth – I would love to explain why Robert’s assertion is simply not true.

Please feel free to post comments or contact me with any thoughts, comments, questions, or suggestions.

MWF
Charlottetown, Prince Edward Island

PS: My report suggests many preliminary and complimentary readings – but I’ve revisited this topic with the aim of producing a selected bibliography of the most condensed and readily accessible (i.e, freely available online) works which may help prepare the reader for my report and the foundational theoretical discourses noted and linked above. Most are short papers, but a few great books and dandy dissertations may be necessary as well!

SELECTED BIBLIOGRAPHY

BERRY, R. (2009). Hooker and islands. Bio Journal Linn Soc 96:462–481.

DARWIN, C., WALLACE, A. (1858). On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Proc Linn Soc 3:45–62.

DARWIN, C., et. al. (1849). A Manual of Scientific Enquiry; Prepared for the use of Her Majesty’s Navy : and Adapted for Travellers in General (Murray, London).

DOBZHANSK Y, T. (1973). Nothing in biology makes sense except in light of evolution. Amer Biol Teacher 35:125- 129.

EINSTEIN, A. (1920). Relativity: The Special and General Theory (Methuen & Co., London).

FIELDING, R. (2010). Artisanal Whaling in the Atlantic: A Comparative Study of Culture, Conflict, and Conservation in St. Vincent and the Faroe Islands. A PhD dissertation (Louisiana State University, Baton Rouge).

FREY, B. (2002). Publishing as Prostitution? Choosing Between One‘s Own Ideas and Academic Failure. Pub Choice 116:205–223.

FUNK, M. (2010a). Truly Non-Cooperative Games: A Unified Theory. MPRA 22775:1–3.

FUNK, M. (2008). On the Truly Noncooperative Game of Life on Earth: In Search of the Unity of Nature & Evolutionary Stable Strategy. MPRA 17280:1–21.

FUNK, M. (2009a). On the Origin of Mass Extinctions: Darwin’s Nontrivial Error. MPRA 20193:1–13.

FUNK, M. (2009b). On the Truly Noncooperative Game of Island Life: Introducing a Unified Theory of Value & Evolutionary Stable ‘Island’ Economic Development Strategy. MPRA 19049:1–113.

FUNK, M. (2009c). On the Problem of Economic Power: Lessons from the Natural History of the Hawaiian Archipelago. MPRA 19371:1–19.

HELFERICH, G. (2004). Humboldt’s Cosmo’s: Alexander von Humboldt and the Latin American Journey that Changed the Way We See the World (Gotham Books, New York).

HOLT, C., ROTH, A. (2004). The Nash equilibrium: A perspective. Proc Natl Acad Sci USA 101:3999–4000.

HAYEK, F. (1974). The Pretense of Knowledge. Nobel Memorial Lecture, 11 December 1974. 1989 reprint. Amer Econ Rev 79:3–7.

HUMBOLDT, A., BONPLAND, A. (1814). Personal Narrative of Travels to the Equinoctial Regions of the New Continent (Longman, London).

KANIPE, J. (2009). The Cosmic Connection: How Astronomical Events Impact Life on Earth (Prometheus, Amherst).

MAYNARD SMITH, J. (1982). Evolution and the Theory of Games (Cambridge Univ, New York).

MAYR, E. (2001). What Evolution Is (Basic Books, New York).

NASH, J., et., al. (1994). The Work of John Nash in Game Theory. Prize Seminar, December 8, 1994 (Sveriges Riksbank, Stockholm).

NASH, J. (1951). Non-Cooperative Games. Ann Math 54:286–295.

NASH, J. (1950). Two-Person Cooperative Games. RAND P-172 (RAND, Santa Monica).

POPPER, K. (1999). All life is Problem Solving (Routledge, London).

POPPER, K. (1992). In Search of a Better World (Routledge, London).

ROGERS, D., EHRLICH, P. (2008). Natural selection and cultural rates of change. Proc Natl Acad Sci USA 105:3416 −3420.

SCHWEICKART, R., et. al. (2006). Threat Mitigation: The Gravity Tractor. NASA NEO Workshop, Vail, Colorado.

SCHWEICKART, R., et. al. (2006). Threat Mitigation: The Asteroid Tugboat. NASA NEO Workshop, Vail, Colorado.

STIGLER, G. (1982). Process and Progress of Economics. J of Pol Econ 91:529–545.

TALEB, N. (2001). Fooled by Randomness (Texere, New York).

WEIBULL, J. (1998). WHAT HAVE WE LEARNED FROM EVOLUTIONARY GAME THEORY SO FAR? (Stockholm School of Economics, Stockholm).

WALLACE, A. (1855). On the Law Which has Regulated the Introduction of New Species. Ann of Nat History 16:184–195.

This is a crosspost from Nextbigfuture

I looked at nuclear winter and city firestorms a few months ago I will summarize the case I made then in the next section. There is significant additions based on my further research and email exchanges that I had with Prof Alan Robock and Brian Toon who wrote the nuclear winter research.

The Steps needed to prove nuclear winter:
1. Prove that enough cities will have firestorms or big enough fires (the claim here is that does not happen)
2. Prove that when enough cities in a suffient area have big fire that enough smoke and soot gets into the stratosphere (trouble with this claim because of the Kuwait fires)
3. Prove that condition persists and effects climate as per models (others have questioned that but this issue is not addressed here

The nuclear winter case is predictated on getting 150 million tons (150 teragram case) of soot, smoke into the stratosphere and having it stay there. The assumption seemed to be that the cities will be targeted and the cities will burn in massive firestorms. Alan Robock indicated that they only included a fire based on the radius of ignition from the atmospheric blasts. However, in the scientific american article and in their 2007 paper the stated assumptions are:

assuming each fire would burn the same area that actually did burn in Hiroshima and assuming an amount of burnable material per person based on various studies.

The implicit assumption is that all buildings react the way the buildings in Hiroshima reacted on that day.

Therefore, the results of Hiroshima are assumed in the Nuclear Winter models.
* 27 days without rain
* with breakfast burners that overturned in the blast and set fires
* mostly wood and paper buildings
* Hiroshima had a firestorm and burned five times more than Nagasaki. Nagasaki was not the best fire resistant city. Nagasaki had the same wood and paper buildings and high population density.
Recommendations
Build only with non-combustible materials (cement and brick that is made fire resistant or specially treated wood). Make the roofs, floors and shingles non-combustible. Add fire retardants to any high volume material that could become fuel loading material. Look at city planning to ensure less fire risk for the city. Have a plan for putting out city wide fires (like controlled flood from dams which are already near cities.)

Continue reading “Nuclear Winter and Fire and Reducing Fire Risks to Cities” | >