Toggle light / dark theme

Its timeless appeal is evident globally, from jewelry in Asia to tools in the Middle East to containers in Europe, and beyond. Only in the last century have moldable, petroleum-based plastics overshadowed it. Our mission is to use biotechnology to grow horns larger than animals can produce, thereby unlocking the medium’s full potential…and eliminating the demand for animal ivory.


Biofabricated Horn.

Engineered living materials (ELM) are designed to blur boundaries. They use cells, mostly microbes, to build inert structural materials such as hardened cement or woodlike replacements for everything from construction materials to furniture. Some, like Srubar’s bricks, even incorporate living cells into the final mix. The result is materials with striking new capabilities, as the innovations on view last week at the Living Materials 2020 conference in Saarbrüken, Germany, showed: airport runways that build themselves and living bandages that grow within the body. “Cells are amazing fabrication plants,” says Neel Joshi, an ELM expert at Northeastern University. “We’re trying to use them to construct things we want.”


Engineered microbes shift from making molecules to materials.

You don’t need a big laser to make laser-induced graphene (LIG). Scientists at Rice University, the University of Tennessee, Knoxville (UT Knoxville) and Oak Ridge National Laboratory (ORNL) are using a very small visible beam to burn the foamy form of carbon into microscopic patterns.


Scientists record the formation of foamy laser-induced graphene made with a small laser mounted to a scanning electron microscope. The reduced size of the conductive material may make it more useful for flexible electronics.

Graphene is an allotropic form of carbon and posses some of the unique properties that are making this compound stand out of all other allotropic compounds of carbon. The compound was discovered in modern ages by two scientists Andre Geim and Konstantin Novoselov from the University of Manchester, UK. After its initial discovery the compound soon began to make impact on every field of life and in recognition to their work they were awarded a physics noble prize in 2010. Graphene has unique physical and chemical properties and is much lighter, flexible and strong than many previously existing compounds.

A team of researchers at the French National Institute of Health and Medical Research in Bordeaux have grown yarn from human skin cells that they call a “human textile” — and they say it could be used by surgeons to close wounds or assemble implantable skin grafts.

“These human textiles offer a unique level of biocompatibility and represent a new generation of completely biological tissue-engineered products,” the researchers wrote in a paper published in the journal Acta Biomaterialia.

The key advantage of the gruesome yarn is that unlike conventional synthetic surgical materials, the material doesn’t trigger an immune response that can complicate the healing process, according to New Scientist.

Researchers have created a unique device which will unlock the elusive terahertz wavelengths and make revolutionary new technologies possible.

Terahertz waves (THz) sit between microwaves and infrared in the light frequency spectrum, but due to their low-energy scientists have been unable to harness their potential.

The conundrum is known in scientific circles as the terahertz gap.