Toggle light / dark theme

For several decades now, one of the buzz words in the medical field has been ‘stem cell’. It has been said to aid in treating illnesses like multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, and heart diseases.

For the past three years, researchers at the Hubrecht Institute in the Netherlands have been painstakingly cataloging and mapping all the proliferating cells found in mouse hearts, looking for cardiac stem cells. The elusive cells should theoretically be able to repair damaged heart muscle, so the stakes in finding them have been high.

This week, however, Proceedings of the National Academy of Sciences is scheduled to announce the results of the Hubrecht team’s work: no evidence of cardiac stem cells at all.

Read more

This particular region is located over 66,000 light years from Earth and at on opposite side of the Milky Way, relative to our Solar System. The previous record for a parallax measurement was about 36,000 light-years, roughly 11,000 light years farther than the distance between our Solar System and the center of our galaxy. As Sanna explained, this accomplishment in radio astronomy will enable surveys that reach much farther than previous ones:

“Most of the stars and gas in our Galaxy are within this newly-measured distance from the Sun. With the VLBA, we now have the capability to measure enough distances to accurately trace the Galaxy’s spiral arms and learn their true shapes.”

Hundreds of star-forming regions exist within the Milky Way. But as Karl Menten – a member of the MPIfR and a co-author on the study – explained, this study was significant because of where this one is located. “So we have plenty of ‘mileposts’ to use for our mapping project,” he said. “But this one is special: Looking all the way through the Milky Way, past its center, way out into the other side.”

Read more

Scientists mapping out the quantum characteristics of superconductors—materials that conduct electricity with no energy loss—have entered a new regime. Using newly connected tools named OASIS at the U.S. Department of Energy’s Brookhaven National Laboratory, they’ve uncovered previously inaccessible details of the “phase diagram” of one of the most commonly studied “high-temperature” superconductors. The newly mapped data includes signals of what happens when superconductivity vanishes.

Read more

[Editor’s Note: Mad Scientist Laboratory is pleased to publish the following post by returning guest blogger and proclaimed Mad Scientist Ms. Marie Murphy, addressing Directed Energy Weapon (DEW) applications in space, and their potential impact on Multi-Domain Operations (MDO) in the Future Operational Environment.]

The image of the “space war” is ubiquitous from popular Cold War and contemporary renderings: fast attack fighters equipped with laser cannons, swooping in to engage the enemy fleet in an outer space dogfight, culminating with the cataclysmic explosion of the enemy’s dreadnought. The use of directed energy in this scenario, while making for good entertainment, is a far cry from the practical applications of directed energy in space out to 2050. Taking a step back from the thrilling future possibilities of space combat, it is important to note that it is not a question of when lasers will be put into space — they already have been. What is uncertain is the speed at which lasers and other forms of directed energy will be weaponized, and when these capabilities will be used to extend conflict into the physical domain of low-earth orbit and outer space.

Since 2003, NASA has used a laser mounted on a satellite to measure ice sheets and conduct other environmental studies and mapping. This mission involved the constant emission of a green laser, split into six beams, reflecting off polar ice and returning photons to the satellite. NASA is presently exploring the use of lasers for communications, a technology with abundant military applications. One such program, undertaken jointly by NASA and private industry, is the use of optical, or laser, communications between space assets and ground stations on Earth. These optical transmissions have the benefit of allowing the communication.

Read more

https://paper.li/e-1437691924#/&h=AT3mdHzXuCejMgVQDYy6JiVw58iJGZIgGTYe9g5Js4YY0ms5cS56_xojdMJN7YnpXFDmd7z9W1xTzFUvSY2obFN165c56HoorlpgeIIfRS5CglZnl34H4zDit56Xw7uiwMcy_m6_1h7KDbJILtYDjHzUHTkM9-L_iPWQy1moZrmAe-BeRlnE2g


“Our world is changing so fast… this year we have sessions on artificial intelligence, genetics and what the future holds for our planet. There is a new term now — cli-fi. We have a beautiful session on cli-fi, on what would happen if bees disappear.

”I feel at this moment in our country it is very very important to give impetus to empirical thinking,” the author of ”Paro: Dreams of Passion” said.

Nobel Laureate Venki Ramakrishnan will speak on the ‘Importance of Science’, cosmologist Priyamvada Natarajan on ‘Mapping the Heavens’ and professor of AI Toby Walsh on ‘How the Future is Now’ among others.

Read more

Sydney Harbour and the Egyptian pyramids feature in the debut images from the first all-UK radar spacecraft.

NovaSAR was developed jointly by Surrey Satellite Technology Limited of Guildford and Airbus in Portsmouth, and launched to orbit in September.

Its pictures are now being assessed for use in diverse applications, including crop analysis, flood and forestry mapping, and maritime surveillance.

Read more

Michio Kaku calls the brain “the most complicated object in the known universe.” So, despite plenty of study, maybe it’s not a total surprise that we’re still finding new parts of it. After decades of mapping the brains of humans and other mammals, and publishing a multitude of books and journal articles on the subject, Professor George Paxinos AO (Order of Australia) has discovered a new region of the human brain that he says could be part of what makes us unique.

Read more

Chances are you make it through most days without sparing a thought for Antarctica. At just over 5.4 million square miles, it’s a massive chunk of land that is nearly twice the size of Australia and dwarfs the continental United States. It’s also covered in ice, which makes it a lot less appealing as a potential vacation destination.

Still, it’s of great interest to scientists and researchers, and a new mapping effort has yielded the most stunning, high-resolution glimpse of the continent ever.

Read more