Toggle light / dark theme

When practical quantum computing finally arrives, it will have the power to crack the standard digital codes that safeguard online privacy and security for governments, corporations, and virtually everyone who uses the Internet. That’s why a U.S. government agency has challenged researchers to develop a new generation of quantum-resistant cryptographic algorithms.

Many experts don ’t expect a quantum computer capable of performing the complex calculations required to crack modern cryptography standards to become a reality within the next 10 years. But the U.S. National Institute of Standards and Technology (NIST) wants to stay ahead by getting new cryptographic standards ready by 2022. The agency is overseeing the second phase of its Post-Quantum Cryptography Standardization Process to narrow down the best candidates for quantum-resistant algorithms that can replace modern cryptography.

“Currently intractable computational problems that protect widely-deployed cryptosystems, such as RSA and Elliptic Curve-based schemes, are expected to become solvable,” says Rafael Misoczki, a cryptographer at the Intel Corporation and a member of two teams (named Bike and Classic McEliece) involved in the NIST process. “This means that quantum computers have the potential to eventually break most secure communications on the planet.”

https://www.youtube.com/watch?v=ITcdtrC53iw

Tomorrow’s wars will be faster, more high-tech, and less human than ever before. Welcome to a new era of machine-driven warfare.

W allops Island —a remote, marshy spit of land along the eastern shore of Virginia, near a famed national refuge for horses—is mostly known as a launch site for government and private rockets. But it also makes for a perfect, quiet spot to test a revolutionary weapons technology.

If a fishing vessel had steamed past the area last October, the crew might have glimpsed half a dozen or so 35-foot-long inflatable boats darting through the shallows, and thought little of it. But if crew members had looked closer, they would have seen that no one was aboard: The engine throttle levers were shifting up and down as if controlled by ghosts. The boats were using high-tech gear to sense their surroundings, communicate with one another, and automatically position themselves so, in theory, .50-caliber machine guns that can be strapped to their bows could fire a steady stream of bullets to protect troops landing on a beach.

On Wednesday, at the United Nations Convention on Certain Conventional Weapons in Geneva, a panel of government experts debated policy options regarding lethal autonomous weapons.

Dutch NGO Pax created a report that surveyed major players from the sector on their view of lethal autonomous weapons. They categorised companies based on 3 criteria: whether they were developing technology that’s potentially relevant to deadly AI, working on related military products, and if they had committed to abstaining from contributing in the future.

By these criteria, Microsoft scores rather highly in the birthplace of Skynet rankings. Microsoft has invested extensively in developing artificial intelligence products, has very close relationships with the US military, and Satya Nadella has committed to providing the military with their very best technology. While Microsoft has fallen short of explicitly developing AI for military purposes, we do know that they have developed a version of the HoloLens for the military that is specifically designed to increase the lethality of soldiers in the field.

Hmmmm.


ATTENTION owners of truly massive, human-built tunnels and subterranean complexes: The US military’s secretive research agency urgently needs your underground lair for some undisclosed experiments.

DARPA tweeted on Wednesday that within the next 48 hours it must find a “human-made underground environment spanning several city blocks with complex layout & multiple stories, including atriums, tunnels & stairwells. Spaces that are currently closed off from pedestrians or can be temporarily used for testing are of interest.”

I’m imagining something along the lines of the underground world used by the tethered in the movie Us, though it also sounds like abandoned underground malls, bunkers, cities, and as-to-yet undiscovered sites of lost civilizations may qualify, so long as the space is found by 5 PM Friday (Eastern Time; the government’s hours are very rigid.)

Editor’s note: This article is part of a supporting engagement with the Electromagnetic Defense Task Force’s efforts in order to inform readers on the vulnerabilities within the electromagnetic spectrum. For the printer friendly version click here.

Abstract

In spring 2019, a group of nearly 200 military, government, academic, and private industry experts in various areas of electromagnetic defense gathered for the second Electromagnetic Defense Task Force (EDTF) summit. During this time a full analytical and technical review was initiated on the recently released report titled “High-Altitude Electromagnetic Pulse and the Bulk Power System: Potential Impacts and Mitigation Strategies” authored by the Electric Power Research Institute (EPRI). This essay outlines the strengths and weaknesses of the report and aims to generate further discussion among industry, policy makers, military, and academia to ensure the nation is adequately prepared for any potential electromagnetic event.

In normal vision, light falls on the retinas inside the eyes, and is immediately transduced into electrochemical signals before being uploaded to the brain through the optic nerves. So you do not see light itself, but the brain’s interpretation of electrochemical signals in the visual parts of the brain. It follows that, if your eyes do not work, but your brain is stimulated just so, your visual neurons will activate (and you will be able to see) just the same as if your eyes were in perfect condition.

Sounds easy, but can we do that? Building on decades of research in visual neuroscience, my lab, in collaboration with Susana Martinez-Conde’s, has now conducted some of the studies that validate this idea, completing some of the most important preliminary steps towards a new kind of visual prosthetic.

Francis Collins, the Director of the National Institutes of Health, has just posted a blog that highlights our approach. He took notice of our work when we first presented it at this year’s meeting for the Principal Investigators of the BRAIN Initiative—the NIH led government funding initiative meant to spur research along on topics like brain implants. The BRAIN Initiative funds several agencies including the NIH, including the National Science Foundation, who kindly funded the grant driving our research thus far.