Toggle light / dark theme

Perhaps the most important lesson, which I have learned from Mises, was a lesson located outside economics itself. What Mises taught us in his writings, in his lectures, in his seminars, and in perhaps everything he said, was that economics—yes, and I mean sound economics, Austrian economics—is primordially, crucially important. Economics is not an intellectual game. Economics is deadly serious. The very future of mankind —of civilization—depends, in Mises’ view, upon widespread understanding of, and respect for, the principles of economics.

This is a lesson, which is located almost entirely outside economics proper. But all Mises’ work depended ultimately upon this tenet. Almost invariably, a scientist is motivated by values not strictly part of the science itself. The lust for fame, for material rewards—even the pure love of truth—these goals may possibly be fulfilled by scientific success, but are themselves not identified by science as worthwhile goals. What drove Mises, what accounted for his passionate dedication, his ability to calmly ignore the sneers of, and the isolation imposed by academic contemporaries, was his conviction that the survival of mankind depends on the development and dissemination of Austrian economics…

Austrian economics is not simply a matter of intellectual problem solving, like a challenging crossword puzzle, but literally a matter of the life or death of the human race.

–Israel M. Kirzner, Society for the Development of Austrian Economics Lifetime Achievement Award Acceptance Speech, 2006

Dear Lifeboat Foundation family & friends,

This 243-page thesis and this 16-page executive summary deliver a tenable, game-theoretical solution to this complex global dilemma:

Our narrative tables evolutionarily stable strategy for the problem of sustainable economic development on earth and other earth-like planets. In order to accomplish the task at hand with so few words, we hit the ground running with an exploration of Bertrand Russell’s conjecture that economic power is a derivative function of military power. Next we contextualize the formidable obstacle presented of teleological thinking. Third, we introduce Truly Non-cooperative Games – axioms and complimentary negotiation models developed to analyze a myriad of politico-economic problems, including the problem of sustainable economic development. Here we present The Principle of Relative Insularity, a unified theory of value which unites economics, astrophysics, and biology. Finally, we offer a synthetic narrative in which we explore several crucial logical implications that follow from our findings.

Those interested in background details and/or a deeper exploration of the logical implications that follow from this theoretical development may wish to pursue a few pages of an comprehensive, creative, and thoroughly exhaustive letter of introduction to this abridged synthesis: The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth.

Those interested in considering how this game-theoretical solution informs “evolutionarily stable” investment strategy may also wish to take in a brief overview of my PhD research: On the Problem of Modern Portfolio Theory: In Search of a Timeless & Universal Investment Perspective.

Please feel free to post all thoughts, comments, criticisms, and suggestions.

Thanks for reading!

Sincerely,

Matt Funk, FLS, BSc, MA, MFA, PhD Candidate, University of Malta, Department of Banking & Finance

PS: The author would like to thank the Lifeboat Foundation, Linnean Society of London, Property and Environment Research Center, Society for Range Management, Professors Kurial, Nagarajan, Baldacchino, Fielding, Falzon (University of Malta), Lockwood (University of Wyoming), MacKinnon (Memorial University), Sloan (Lancaster University), McKenna (Notre Dame), Schlicht (Ludwig-Maximilians- Universität München) and his dedicated team at MPRA, author & astronomer Jeff Kanipe, Dr Willard S. Boyle, Dr John Harris, fellow students, family, and friends for their priceless guidance, support, and encouragement. He also sends out a very special thanks to Professors Frey (Universität Zürich), Selten (Universität Bonn), and Nash (Princeton University) for their originality, independence, and inspiration.

I am both the warner and the only reporter — a strange situation to be in. My scientific results prove that the currently running LHC experiment is going to shrink the earth to 2 cm in perhaps 5 years’ time with a probability of 8 percent if continued. They stay un-disproved for 3 years but no one takes notice. What is the explanation?

If my results were nonsense, some scientist would have taken the trouble to dismantle them publicly under her or his own name so I could respond and an open consensus – if need be that to disagree — could form as befits both science and the dignity of the public.

The fact that CERN currently continues in defiance of a Cologne court’s request to first admit a scientific safety conference is equally baffling, since again the public appears to have the right to know.

While CERN keeps a low profile, a well-equipped blog owned by a member of CERN’s sister institution, DESY, substitutes refutation by ad-hominem assaults to influence the media. Although experienced hatred is better than no response at all, this response throws a scant light on CERN’s science.

Why not demonstrate to the world why the gothic-R theorem and the Telemach theorem and the miniquasar theorem and the immunity of neutron stars theorem are false? A single one out of them, if disproved, will instantaneously transform me into CERN’s best ally as CERN well knows. Never was there a more manifest fear of the truth, it appears.

My last hope are the current victims of the technological hubris of another nuclear machine. They alone have nothing to lose by speaking the truth. Maybe one of them feels that a small amount of their remaining lifetime is worth investing to safeguard the lives of those dearest to them? For it is only contrition before heaven that can save us all,

Prof. Otto E. Rossler, chaos researcher, University of Tubingen, Germany (For J.O.R., April 13, 2011)

A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

Posted in asteroid/comet impacts, biological, complex systems, cosmology, defense, economics, existential risks, geopolitics, habitats, human trajectories, lifeboat, military, philosophy, sustainabilityTagged , , , , , , , , , , , | 2 Comments on A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

(NOTE: Selecting the “Switch to White” button on the upper right-hand corner of the screen may ease reading this text).

“Who are you?” A simple question sometimes requires a complex answer. When a Homeric hero is asked who he is.., his answer consists of more than just his name; he provides a list of his ancestors. The history of his family is an essential constituent of his identity. When the city of Aphrodisias… decided to honor a prominent citizen with a public funeral…, the decree in his honor identified him in the following manner:

Hermogenes, son of Hephaistion, the so-called Theodotos, one of the first and most illustrious citizens, a man who has as his ancestors men among the greatest and among those who built together the community and have lived in virtue, love of glory, many promises of benefactions, and the most beautiful deeds for the fatherland; a man who has been himself good and virtuous, a lover of the fatherland, a constructor, a benefactor of the polis, and a savior.
– Angelos Chaniotis, In Search of an Identity: European Discourses and Ancient Paradigms, 2010

I realize many may not have the time to read all of this post — let alone the treatise it introduces — so for those with just a few minutes to spare, consider abandoning the remainder of this introduction and spending a few moments with a brief narrative which distills the very essence of the problem at hand: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

But for those with the time and inclinations for long and windy paths through the woods, please allow me to introduce myself: I was born and raised in Kentland, Indiana, a few blocks from the train station where my great-great grandfather, Barney Funk, arrived from Germany, on Christmas day of 1859. I completed a BSc in Entrepreneurship and an MFA in film at USC, and an MA in Island Studies at UPEI. I am a naturalist, Fellow of The Linnean Society of London, PhD candidate in economics at the University of Malta, hunter & fisherman, NRA member, protective father, and devoted husband with a long, long line of illustrious ancestors, a loving mother & father, extraordinary brothers & sister, wonderful wife, beautiful son & daughter, courageous cousins, and fantastic aunts, uncles, in-laws, colleagues, and fabulous friends!

Thus my answer to the simple question, “Who are you?” requires a somewhat complex answer as well.

But time is short and I am well-positioned to simplify because all of the hats I wear fall under a single umbrella: I am a friend of the Lifeboat Foundation (where I am honoured to serve on the Human Trajectories, Economics, Finance, and Diplomacy Advisory Boards), a foundation “dedicated to encouraging scientific advancements while helping humanity survive existential risks.”

Almost everything I do – including the roles, associations, and relationships noted above, supports this mission.

It’s been nearly a year since Eric generously publish Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth, and since that time I have been fortunate to receive many interesting and insightful emails packed full of comments and questions; thus I would like to take this opportunity to introduce this work – which represents three years of research.

Those interested in taking the plunge and downloading the file above may note that this discourse

tables an evolutionarily stable strategy for the problem of sustainable economic development – on islands and island-like planets (such as Earth), alike, and thus this treatise yields, in essence, a long-term survival guide for the inhabitants of Earth.

Thus you may expect a rather long, complex discourse.

This is indeed what you may find – a 121 page synthesis, including this 1,233 page Digital Supplement.

As Nassim Nicholas Taleb remarked in Fooled by Randomness:

I do not dispute that arguments should be simplified to their maximum potential; but people often confuse complex ideas that cannot be simplified into a media-friendly statement as symptomatic of a confused mind. MBAs learn the concept of clarity and simplicity—the five-minute manager take on things. The concept may apply to the business plan for a fertilizer plant, but not to highly probabilistic arguments—which is the reason I have anecdotal evidence in my business that MBAs tend to blow up in financial markets, as they are trained to simplify matters a couple of steps beyond their requirement.

But there is indeed a short-cut — in fact, there are at least two short-cuts.

First, perhaps the most direct pleasant approach to the summit is a condensed, 237 page thesis: On the Problem of Sustainable Economic Development: A Game-Theoretical Solution.

But for those pressed for time and/or those merely interested in sampling a few short, foundational works (perhaps to see if you’re interested in following me down the rabbit hole), the entire theoretical content of this 1,354-page report (report + digital supplement) may be gleamed from 5 of the 23 works included within the digital supplement. These working papers and publications are also freely available from the links below – I’ll briefly relate how these key puzzle pieces fit together:

The first publication offers a 13-page over-view of our “problem situation”: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

Second is a 21-page game-theoretical development which frames the problem of sustainable economic development in the light of evolution – perhaps 70% of our theoretical content lies here: On the Truly Noncooperative Game of Life on Earth: In Search of the Unity of Nature & Evolutionary Stable Strategy.

Next comes a 113-page gem which attempts to capture the spirit and essence of comparative island studies, a course charted by Alexander von Humboldt and followed by every great naturalist since (of which, more to follow). This is an open letter to the Fellows of the Linnean Society of London, a comparative study of two, diametrically opposed economic development plans, both put into action in that fateful year of 1968 — one on Prince Edward Island, the other on Mustique. This exhaustive work also holds the remainder of the foundation for our complete solution to this global dilemma – and best of all, those fairly well-versed in game theory need not read it all, the core solution may be quickly digested on pages 25–51:
On the Truly Noncooperative Game of Island Life: Introducing a Unified Theory of Value & Evolutionary Stable ‘Island’ Economic Development Strategy.

Fourth comes an optional, 19-page exploration that presents a theoretical development also derived and illuminated through comparative island study (including a mini-discourse on methods). UPEI Island Studies Programme readers with the time and inclination for only one relatively short piece, this may be the one to explore. And, despite the fact that this work supports the theoretical content linked above, it’s optional because there’s nothing new here – in fact, these truths have been well known and meticulously documented for over 1,000 years – but it may prove to be a worthwhile, engaging, and interesting read nonetheless, because these truths have become so unfashionable that they’ve slipped back into relative obscurity: On the Problem of Economic Power: Lessons from the Natural History of the Hawaiian Archipelago.

And finally I’ll highlight another optional, brief communique – although this argument may be hopelessly compressed, here, in 3 pages, is my entire solution:
Truly Non-Cooperative Games: A Unified Theory.

Yes, Lifeboat Foundation family and friends, you may wish to pause to review the abstracts to these core, foundational works, or you may even wish to review them completely and put the puzzle pieces together yourself (the pages linked above total 169 – or a mere 82 pages if you stick to the core excerpt highlighted in my Linnean Letter), but, as the great American novelist Henry Miller remarked:

In this age, which believes that there is a short cut to everything, the greatest lesson to be learned is that the most difficult way is, in the long run, the easiest.

Why?

That’s yet another great, simple question that may require several complex answers, but I’ll give you three:

#1). First and foremost, because explaining is a difficult art.

As Richard Dawkins duly noted:

Explaining is a difficult art. You can explain something so that your reader understands the words; and you can explain something so that the reader feels it in the marrow of his bones. To do the latter, it sometimes isn’t enough to lay the evidence before the reader in a dispassionate way. You have to become an advocate and use the tricks of the advocate’s trade.

Of course much of this depends upon the reader – naturally some readers may find that less (explanation) is more. Others, however, may find benefit from reading even more (more, that is, than my report and the digital supplement). You may find suggested preliminary and complimentary texts in the SELECTED BIBLIOGRAPHY (below). The report itself includes these and many more. In short, the more familiar readers may be with some or all of these works, the less explaining they may require.

#2). No matter how much explaining you do, it’s actually never enough, and, as Abraham Lincoln wisely noted at Gettysburg, the work is never done. For more one this important point, let’s consider the words of Karl Popper:

When we propose a theory, or try to understand a theory, we also propose, or try to understand, its logical implications; that is, all those statements which follow from it. But this… is a hopeless task: there is an infinity of unforeseeable nontrivial statements belonging to the informative content of any theory, and an exactly corresponding infinity of statements belonging to its logical content. We can therefore never know or understand all the implications of any theory, or its full significance.
This, I think, is a surprising result as far as it concerns logical content; though for informative content it turns out to be rather natural…. It shows, among other things, that understanding a theory is always an infinite task, and that theories can in principle be understood better and better. It also shows that, if we wish to understand a theory better, what we have to do first is to discover its logical relation to those existing problems and existing theories which constitute what we may call the ‘problem situation’.
Admittedly, we also try to look ahead: we try to discover new problems raised by our theory. But the task is infinite, and can never be completed.

In fact, when it comes right down to it, my treatise – in fact, my entire body of research, is, in reality, merely an exploration of the “infinity of unforeseeable nontrivial statements belonging to the informative content” of the theory for which Sir Karl Popper is famous: his solution to David Hume’s problem of induction (of which you’ll hear a great deal if you brave the perilous seas of thought in the works introduced and linked herewith).

#3). Okay, this is a tricky one, but here it goes: Fine, a reasonable skeptic may counter, I get it, it’s hard to explain and there’s a lot of explaining to do – but if 100% of the theoretical content may be extracted from less than 200 pages, then doesn’t that mean you could cut about 1,000 pages?

My answer?

Maybe.

But then again, maybe not.

The reality of the situation is this: neither I nor anyone else can say for sure – this is known as the mind-body problem. In essence, given the mind-body problem, not only am I unable to know exactly how to explain something I know, moreover, I’m not even able to know how it is that I know what I know. I’m merely able to guess. Although this brief introduction is not the proper time nor place to explore the contents of this iteration of Pandora’s Box, those interested in a thorough exploration of this particular problem situation would be well-served with F.A. von Hayek’s The Sensory Order: An Inquiry into the Foundations of Theoretical Psychology (1952). But, in short, the bulk of the Digital Supplement and much of the report itself is merely an attempt to combat the mind-body problem – an attempt to put down as much of the history (and methodology) of this theoretical development as possible. As Descartes remarked at the outset of a treatise on scientific method:

This Tract is put forth merely as a history, or, if you will, as a tale, in which, amid some examples worthy of imitation, there will be found, perhaps, as many more which it were advisable not to follow, I hope it will prove useful to some without being hurtful to any, and that my openness will find some favor with all.

Perhaps you may grasp my theoretical development – but perhaps you may grasp it in a matter by which I did not intend for you to grasp it – perhaps I had stumbled upon a truth in another work within my digital supplement that may make it all clear. Or, perhaps I’ve got it all wrong, and perhaps you – by following in my footsteps through the historical course of this theoretical development (faithfully chronicled in the digital supplement) – may be able to help show me my error (and then, of course we may both rejoice); Malthus felt likewise:

If [the author] should succeed in drawing the attention of more able men to what he conceives to be the principal difficulty in… society and should, in consequence, see this difficulty removed, even in theory, he will gladly retract his present opinions and rejoice in a conviction of his error.

Anticipating another point regarding style: This report is very, very unusual insofar as style is concerned. It’s personal, highly opinionated, and indulges artistic license at almost every turn in the road. In fact, you may also find this narrative a touch artistic – yet it’s all true. As Norman Maclean remarked in A River Runs Trough It, “You like to tell true stories, don’t you?’ he asked, and I answered, ‘Yes, I like to tell stories that are true.’”

I like to tell stories that are true, too, and if you like to read them, then this epic journey of discovery may be for you. I speak to this point at length, but, in short, I submit that there is a method to the madness (in fact, the entire report may also be regarded as an unusual discourse on method).

Why have I synthesized this important theoretical development in an artistic narrative? In part, because Bruno Frey (2002) clearly stated why that’s the way it should be.

But I also did so in hopes that it may help readers grasp what it’s really all about; as the great Russian-American novelist Ayn Rand detailed:

Man’s profound need of art lies in the fact that his cognitive faculty is conceptual, i.e., that he acquires knowledge by means of abstractions, and needs the power to bring his widest metaphysical abstractions into his immediate, perceptual awareness. Art fulfills this need: by means of a selective re-creation, it concretizes man’s fundamental view of himself and of existence. It tells man, in effect, which aspects of his experience are to be regarded as essential, significant, important. In this sense, art teaches man how to use his consciousness.

Speaking of scientific method: I have suggested that my curiously creative narrative may offer some insight into the non-existent subject of scientific method — so please download for much more along these lines — but I want to offer an important note, especially for colleagues, friends, students, and faculty at UPEI: I sat in on a lecture last winter where I was surprised to learn that “island studies” had been recently invented by Canada research chair – thus I thought perhaps I should offer a correction and suggest where island studies really began:

Although it is somewhat well known that Darwin and Wallace pieced the theory of evolution together independently, yet at roughly the same time – Wallace, during his travels through the Malay archipelago, and Darwin, during his grand circumnavigation of the island of Earth onboard the Beagle (yes, the Galapagos archipelago played a key role, but perhaps not as important as has been suggested in the past). But what is not as commonly know is that both Darwin and Wallace had the same instructor in the art of comparative island studies. Indeed, Darwin and Wallace both traveled with identical copies of the same, treasured book: Alexander von Humboldt’s Personal Narrative of Travels to the Equinoctial Regions of the New Continent. Both also testified to the fundamental role von Humboldt played by inspiring their travels and, moreover, developing of their theories.

Thus, I submit that island studies may have been born with the publication of this monumental work in 1814; or perhaps, as Berry (2009) chronicled in Hooker and Islands (see SELECTED BIBLIOGRAPHY, below), it may have been Thomas Pennant or Georg Forster:

George Low of Orkney provided, together with Gilbert White, a significant part of the biological information used by pioneering travel writer Thomas Pennant, who was a correspondent of both Joseph Banks and Linnaeus [Pennant dedicated his Tour in Scotland and Voyage to the Hebrides (1774–76) to Banks and published Banks’s description of Staffa, which excited much interest in islands; Banks had travelled with James Cook and visited many islands; Georg Forster, who followed Banks as naturalist on Cook’s second voyage inspired Alexander Humboldt, who in turn Darwin treated as a model.

But whomever it may have been — or whomever you may ultimately choose to follow — Humboldt certainly towers over the pages of natural history, and Gerard Helferich’s Humboldt’s Cosmo’s: Alexander von Humboldt and the Latin American Journey that Changed the WayWe See the World (2004) tells Humboldt’s story incredibly well. This treasure also happens to capture the essence of Humboldt’s method, Darwin’s method, Wallace’s method, Mayr’s method, Gould’s method, and it most certainly lays out the map I have attempted to follow:

Instead of trying to pigeonhole the natural world into prescribed classification, Kant had argued, scientists should work to discover the underlying scientific principles at work, since only those general tenets could fully explain the myriad natural phenomena. Thus Kant had extended the unifying tradition of Thales, Newton, Descartes, et al.… Humboldt agreed with Kant that a different approach to science was needed, one that could account for the harmony of nature… The scientific community, despite prodigious discoveries, seemed to have forgotten the Greek vision of nature as an integrated whole.… ‘Rather than discover new, isolated facts I preferred linking already known ones together,’ Humboldt later wrote. Science could only advance ‘by bringing together all the phenomena and creations which the earth has to offer. In this great sequence of cause and effect, nothing can be considered in isolation.’ It is in this underlying connectedness that the genuine mysteries of nature would be found. This was the deeper truth that Humboldt planned to lay bare – a new paradigm from a New World. For only through travel, despite its accompanying risks, could a naturalist make the diverse observations necessary to advance science beyond dogma and conjecture. Although nature operated as a cohesive system, the world was also organized into distinct regions whose unique character was the result of all the interlocking forces at work in that particular place. To uncover the unity of nature, one must study the various regions of the world, comparing and contrasting the natural processes at work in each. The scientist, in other words, must become an explorer.

With these beautiful words in mind and the spirit of adventure in the heart, I thank you for listening to this long story about an even longer story, please allow me to be your guide through an epic adventure.

But for now, in closing, I’d like to briefly return to the topic at hand: human survival on Earth.

A few days ago, Frenchman Alain Robert climbed the world’s tallest building – Burj Khalifa – in Dubai.

After the six hour climb, Robert told Gulf News, “My biggest fear is to waste my time on earth.”

I certainly share Robert’s fear – Alexander von Humboldt, Darwin, and Wallace did, too, by the way.

But then Robert added, “To live, we don’t need much, just a roof over our heads some food and drink and that’s it … everything else is superficial.”

I’m afraid that’s where Robert and I part ways – and if you would kindly join me on a journey through The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth – I would love to explain why Robert’s assertion is simply not true.

Please feel free to post comments or contact me with any thoughts, comments, questions, or suggestions.

MWF
Charlottetown, Prince Edward Island

PS: My report suggests many preliminary and complimentary readings – but I’ve revisited this topic with the aim of producing a selected bibliography of the most condensed and readily accessible (i.e, freely available online) works which may help prepare the reader for my report and the foundational theoretical discourses noted and linked above. Most are short papers, but a few great books and dandy dissertations may be necessary as well!

SELECTED BIBLIOGRAPHY

BERRY, R. (2009). Hooker and islands. Bio Journal Linn Soc 96:462–481.

DARWIN, C., WALLACE, A. (1858). On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Proc Linn Soc 3:45–62.

DARWIN, C., et. al. (1849). A Manual of Scientific Enquiry; Prepared for the use of Her Majesty’s Navy : and Adapted for Travellers in General (Murray, London).

DOBZHANSK Y, T. (1973). Nothing in biology makes sense except in light of evolution. Amer Biol Teacher 35:125- 129.

EINSTEIN, A. (1920). Relativity: The Special and General Theory (Methuen & Co., London).

FIELDING, R. (2010). Artisanal Whaling in the Atlantic: A Comparative Study of Culture, Conflict, and Conservation in St. Vincent and the Faroe Islands. A PhD dissertation (Louisiana State University, Baton Rouge).

FREY, B. (2002). Publishing as Prostitution? Choosing Between One‘s Own Ideas and Academic Failure. Pub Choice 116:205–223.

FUNK, M. (2010a). Truly Non-Cooperative Games: A Unified Theory. MPRA 22775:1–3.

FUNK, M. (2008). On the Truly Noncooperative Game of Life on Earth: In Search of the Unity of Nature & Evolutionary Stable Strategy. MPRA 17280:1–21.

FUNK, M. (2009a). On the Origin of Mass Extinctions: Darwin’s Nontrivial Error. MPRA 20193:1–13.

FUNK, M. (2009b). On the Truly Noncooperative Game of Island Life: Introducing a Unified Theory of Value & Evolutionary Stable ‘Island’ Economic Development Strategy. MPRA 19049:1–113.

FUNK, M. (2009c). On the Problem of Economic Power: Lessons from the Natural History of the Hawaiian Archipelago. MPRA 19371:1–19.

HELFERICH, G. (2004). Humboldt’s Cosmo’s: Alexander von Humboldt and the Latin American Journey that Changed the Way We See the World (Gotham Books, New York).

HOLT, C., ROTH, A. (2004). The Nash equilibrium: A perspective. Proc Natl Acad Sci USA 101:3999–4000.

HAYEK, F. (1974). The Pretense of Knowledge. Nobel Memorial Lecture, 11 December 1974. 1989 reprint. Amer Econ Rev 79:3–7.

HUMBOLDT, A., BONPLAND, A. (1814). Personal Narrative of Travels to the Equinoctial Regions of the New Continent (Longman, London).

KANIPE, J. (2009). The Cosmic Connection: How Astronomical Events Impact Life on Earth (Prometheus, Amherst).

MAYNARD SMITH, J. (1982). Evolution and the Theory of Games (Cambridge Univ, New York).

MAYR, E. (2001). What Evolution Is (Basic Books, New York).

NASH, J., et., al. (1994). The Work of John Nash in Game Theory. Prize Seminar, December 8, 1994 (Sveriges Riksbank, Stockholm).

NASH, J. (1951). Non-Cooperative Games. Ann Math 54:286–295.

NASH, J. (1950). Two-Person Cooperative Games. RAND P-172 (RAND, Santa Monica).

POPPER, K. (1999). All life is Problem Solving (Routledge, London).

POPPER, K. (1992). In Search of a Better World (Routledge, London).

ROGERS, D., EHRLICH, P. (2008). Natural selection and cultural rates of change. Proc Natl Acad Sci USA 105:3416 −3420.

SCHWEICKART, R., et. al. (2006). Threat Mitigation: The Gravity Tractor. NASA NEO Workshop, Vail, Colorado.

SCHWEICKART, R., et. al. (2006). Threat Mitigation: The Asteroid Tugboat. NASA NEO Workshop, Vail, Colorado.

STIGLER, G. (1982). Process and Progress of Economics. J of Pol Econ 91:529–545.

TALEB, N. (2001). Fooled by Randomness (Texere, New York).

WEIBULL, J. (1998). WHAT HAVE WE LEARNED FROM EVOLUTIONARY GAME THEORY SO FAR? (Stockholm School of Economics, Stockholm).

WALLACE, A. (1855). On the Law Which has Regulated the Introduction of New Species. Ann of Nat History 16:184–195.

If nothing else, Japan’s recent tragedy has brought the risk of current nuclear power plants back into focus. While it’s far to early to tell just how grave the Fukushima situation truly is, it is obvious that our best laid plans are inadequate as they relate to engineering facilities to withstand cataclysmic scale events.

Few places on the globe are as well prepared as Japan for earthquakes and the possibility of subsequent tsunamis. However, in spite of their preparedness — which was evidenced by the remarkably small number of casualties given the nature of the events that took place (can you imagine how many people would have perished had this same disaster struck somewhere else in the world?) — Japan’s ability to manage a damaged nuclear power plant was severely compromised.

As frightening as Japan’s situation is, what ought to frighten us even more is that there are many more nuclear power plants in equally vulnerable locations all over the globe. In California, for example, both the San Onofre and Diablo Canyon facilities are right on the coast (they both use ocean water for cooling) and the Diablo Canyon facility in particular is perilously close to a major fault.

Given what we’ve seen in Japan, the widely varying degrees of preparedness around the world, the age of many of the existing power plants and the consequences for even a single catastrophic containment failure, shouldn’t we be taking a long, hard look at nuclear power as a viable means of providing energy for the planet? Have we learned so little from Three Mile Island, Chernobyl, and now Fukushima? Just how capable are we [really] of dealing with a second, a third or a fourth disaster of this type? (and what if they were to happen simultaneously?) With so many existential risks completely beyond our control, does it make sense to add another one when there are other, lower risk alternatives to nuclear energy within our reach?

Below is a Pearltree documenting the situation and management of the damaged Fukushima reactors. Obviously, the news is grave, but imagine if this same situation had transpired in Chile.
Fukushima Nuclear Plants

NOTE: to see the contents of any of the links in this pearltree, just mouse-over the pearl. To see the whole page, simply click it.

Forgive me my courage because I like you. The catastrophe at Fukushima is a testimony to human fallibility. For 3 years, an analogous trap has been opened up for the planet as a whole, but no one believes my proof: An 8-percent probability of the planet being shrunk to 2 cm in perhaps 5 years’ time if the LHC experiment at Geneva is continued.

500 planetary newspapers reported on my warnings in 2008, before the experiment fizzled. After it got resumed in 2010, there is a press curfew worldwide. Even the appeal by a court to at long last admit the scientific safety conference called for (my only request) is quietly skirted by CERN. Just finding out about the truth is asking too much.

The reason is painful and has to do with Einstein and Japan (“I made one mistake in my life,” he said). No one believes any more that he was even greater in his youth. This is what I found out: The famous equivalence principle (between gravity and horizontal acceleration) of 1907 is even more powerful than known. What is known is that clocks tick more slowly further down in gravity, as he proved. But this time-change result stands not alone: Length and mass and charge are equally affected (TeLeMaCh theorem, for T, L, M, Ch) as is easy to prove. Hence gravity is much more powerful than anticipated. Black holes have radically different properties, for example. And black holes are being tried to be generated at the LHC.

Why the planet-wide press curfew since 2008? Apparently a nobelist cooperating with the LHC gave the parole that the new result is “absolute nonsense,” which would be gratifying to believe if true. But the press for some reason forgot to ask back: “Did you discuss your counterclaim with the author?” (No.) “Has anyone proved it?” (No.) “Is anyone ready to defend it publicly in dialog?” (No.)

So this is the largest possible accident to occur to the trustworthiness of the media. The price to pay by everyone is lack of protection for the planet. Einstein’s life was crushed after the atomic bomb. Can the planet expect to be saved by his “happiest thought” as he always called the equivalence principle? I tremble asking you this question.

For J.O.R. (March 27, 2011)

The field of life extension is broad and ranges from regenerative medicine to disease prevention by nutritional supplements and phytomedicine. Although the relevance of longevity and disease prevention to existential risks is less apparent than the prevention of large-scale catastrophic scenarios, it does have a high relevance to the future of our society. The development of healthy longevity and the efficiency of modern medicine in treating age-related diseases and the question of how well we can handle upcoming issues related to public health will have a major impact on our short-term future in the next few decades. Therefore, the prospect of healthy life extension plays important roles at both a personal and a societal level.
From a personal perspective, a longevity-compatible lifestyle, nutrition and supplementary regimen may not only help us to be active and to live longer, but optimizing our health and fitness also increase our energy, mental performance and capacities for social interaction. This aids our ability to work on the increasingly complex tasks of a 21st-century world that can make a positive impact in society, such as work on existential risk awareness and problem-solving. Recently, I wrote a basic personal orientation on the dietary supplement aspect of basic life extension with an audience of transhumanists, technology advocates with a high future shock level and open-minded scientists in mind, which is available here.
On a societal level, however, aging population and public health issues are serious. A rapid increase of some diseases of civilization, whose prevalence also climbs rapidly with advanced age, is on the march. For example, Type-II-Diabetes is rapidly on its way to becoming an insurmountable problem for China and the WHO projects COPD, the chronic lung disease caused by smoking and pollution, as the third leading cause of death in 2030.
While the currently accelerating increase of diseases of civilization may not collapse society itself, the costs associated with an overaging population could significantly damage societal order, collapse health systems and impact economies given the presently insufficient state of medicine and prevention. The magnitude, urgency and broad spectrum of consequences of age-related diseases of civilization currently being on the march is captured very well in this 5-minute fact-filled presentation on serious upcoming issues of aging in our society today by the LifeStar Foundation. Viewing is highly recommended. In short, a full-blown health crisis appears to be looming over many western countries, including the US, due to the high prevalence of diseases of aging in a growing population. This may require more resources than available if disease prevention efforts are not stepped up as early as possible. In that case, the required urgent action to deal with such a crisis may deprive other technological sectors of time and resources, affecting organizations and governments, including their capacity to manage vital infrastructure, existential risks and planning for a safe and sufficient progress of technology. Hence, not caring about the major upcoming health issue by stepping up disease prevention efforts according to latest biomedical knowledge may indirectly pose challenges affecting our capabilities to handle existential risks.
It should be pointed out that not all measures aimed at improving public health and medicine need to be complex or expensive to attain, as even existing biomedical knowledge is not sufficiently applied. A major example for this is the epidemic Vitamin D deficiency of the western population which was uncovered several years ago. In the last few years, the range of diseases that Vitamin D deficiency and –therapy can influence has grown to include most cancers, diabetes, cardiovascular diseases, brain aging including Alzheimer’s disease and many infectious diseases. Ironically, Vitamin D is one of the cheapest supplements available. Moreover, correcting an existing Vitamin D deficiency, which may affect as much as 80% of western population, may cut mortality risk in half. The related mortality decrease would likely coincide with a reduced morbidity and illness of elderly people, resulting in large savings of public healthcare and hospital funds, since Vitamin D effectively prevents and treats some of the most costly age-related diseases. The Life Extension Foundation, for example, has already offered a free initial supply to the U.S. population and shown that massive healthcare costs (and many lives) could be saved if every hospitalized patient was tested for Vitamin D and/or given the supplement, however this offer was ignored by the US government. This is detailed in an article on the effects of widespread Vitamin D deficiency from the Life Extension Foundation, along with many references for the above health effects of Vitamin D at the end of that article.
To recapitulate, there are plenty of important reasons why the focus on disease prevention and regenerative medicine, by applying existing state-of-the-art biomedical knowledge, as well as advancing key areas such as stem-cell research, rejuvenation technologies and nanomedicine should be an urgent priority for advocates of existential risk management today and during the next few decades.

I deeply feel with the Japanese victims of a lack of human caution regarding nuclear reactors. Is it compatible with this atonement if I desperately ask the victims to speak up with me against the next consciously incurred catastrophe made in Switzerland? If the proof of danger stays un-disproved, CERN is currently about to melt the earth’s mantle along with its core down to a 2-cm black hole in perhaps 5 years time at a probability of 8 percent. A million nuclear power plants pale before the “European Centre for Nuclear Research.” CERN must not be allowed to go on shunning the scientific safety conference sternly advised by a Cologne court only six weeks ago.

I thank Lifeboat for distributing this message worldwide.

1) Mini black holes are both non-evaporating and uncharged.

2) The new unchargedness makes them much more likely to arise in the LHC (since electrons are no longer point-shaped in confirmation of string theory).

3) When stuck inside matter, mini black holes grow exponentially as “miniquasars” to shrink earth to 2 cm in perhaps 5 years time.

4) They go undetected by CERN’s detectors.

5) They cannot eat neutron star cores (CERN’s life insurance argument is misleading).

For almost one year, CERN tries to produce them. Last week, CERN resumed operation while openly shunning the scientific safety conference publicly demanded for three years and most recently advised by a Cologne court.
The world’s media who do not believe that CERN betrays them are encouraged to ask one constructive question: Is a single physics nobelist ready to disprove one of the above 5 points?

Ref.
i) O.E. Rossler, “Abraham-solution to Schwarzschild metric implies that CERN miniblack holes pose a planetary risk,” in: Vernetzte Wissenschaften — Crosslinks in Natural and Social Sciences (P.J. Plath and E.C. Hass, eds.), pp. 263–270. Logos-Verlag Berlin, July 2008; online:
http://www.wissensnavigator.com/documents/ottoroesslerminiblackhole.pdf
ii) O.E. Rossler, “A rational and moral and spiritual dilemma,” in: Personal and Spiritual Development in the World of Cultural Diversity,
Vol. 5 (G.E,., Lasker and K. Hiwaki, eds.), pp.61–66. Int. Inst. Adv. Stud. Systems Research and Cybernetics, Tecumseh, July 2008; online:
http://www.wissensnavigator.com/documents/spiritualottoeroessler.pdf
iii) O.E. Rossler, TeLeMaCh theorem, http://www.wissensnavigator.com/documents/einsteins-equivalence-principle-has-three-further-implications-besides-affecting-time_t-l-m-.pdf

Ray Kurzweil is unique for having seen the unstoppable exponential growth of the computer revolution and extrapolating it correctly towards the attainment of a point which he called “singularity” and projects about 50 years into the future. At that point, the brain power of all human beings combined will be surpassed by the digital revolution.

The theory of the singularity has two flaws: a reparable and a hopefully not irreparable one. The repairable one has to do with the different use humans make of their brains compared to that of all animals on earth and presumably the universe. This special use can, however, be clearly defined and because of its preciousness be exported. This idea of “galactic export” makes Kurzweil’s program even more attractive.

The second drawback is nothing Ray Kurzweil has anything to do with, being entirely the fault of the rest of humankind: The half century that the singularity still needs to be reached may not be available any more.

The reason for that is CERN. Even though presented in time with published proofs that its proton-colliding experiment will with a probability of 8 percent produce a resident exponentially growing mini black hole eating earth inside out in perhaps 5 years time, CERN prefers not to quote those results or try and dismantle them before acting. Even the call by an administrative court (Cologne) to convene the overdue scientific safety conference before continuing was ignored when CERN re-ignited the machine a week ago.

This is most interesting news for singularity theorists. The majority of the currently living population of planet earth is unable to “think exponentially.” Can Ray Kurzweil or Lifeboat or the Singularity University somehow entice CERN into dialog before it is too late?

For J.O.R. (March 10, 2011)

Strong AI or Artificial General Intelligence (AGI) stands for self-improving intelligent systems possessing the capacity to interact with theoretical- and real-world problems with a similar flexibility as an intelligent living being, but the performance and accuracy of a machine. Promising foundations for AGI exist in the current fields of stochastic- and cognitive science as well as traditional artificial intelligence. My aim in this post is to give a very basic insight into- and feeling for the issues involved in dealing with the complexity and universality of an AGI for a general readership.

Classical AI, such as machine learning algorithms and expert systems, are already heavily utilized in today’s real-world problems, in the form of mature machine learning algorithms, which may profitably exploit patterns in customer behaviour, find correlations in scientific data or even predict negotiation strategies, for example [1] [2], or in the form of genetic algorithms. With the next upcoming technology for organizing knowledge on the net, which is called the semantic web and deals with machine-interpretable understanding of words in the context of natural language, we may start inventing early parts of technology playing a role in the future development of AGI. Semantic approaches come from computer science, sociology and current AI research, but promise to describe and ‘understand’ real-world concepts and to enable our computers to build interfaces to real world concepts and coherences more autonomously. Actually getting from expert systems to AGI will require approaches to bootstrap self-improving systems and more research on cognition, but must also involve crucial security aspects. Institutions associated with this early research include the Singularity Institute [3] and the Lifeboat Foundation [4].

In the recent past, we had new kinds of security challenges: DoS attacks, eMail- and PDF-worms and a plethora of other malware, which sometimes even made it into military and other sensitive networks, and stole credit cards and private data en masse. These were and are among the first serious incidents related to the Internet. But still, all of these followed a narrow and predictable pattern, constrained by our current generation of PCs, (in-)security architecture, network protocols, software applications, and of course human flaws (e.g. the emotional response exploited by the “ILOVEYOU virus”). To understand the implications in strong AI first means to realize that probably there won’t be any human-predictable hardware, software, interfaces around for longer periods of time as long as AGI takes off hard enough.

To grasp the new security implications, it’s important to understand how insecurity can arise from the complexity of technological systems. The vast potential of complex systems oft makes their effects hard to predict for the human mind which is actually riddled with biases based on its biological evolution. For example, the application of the simplest mathematical equations can produce complex results hard to understand and predict by common sense. Cellular automata, for example, are simple rules for generating new dots, based on which dots, generated by the same rule, are observed in the previous step. Many of these rules can be encoded in as little as 4 letters (32 bits), and generate astounding complexity.

Cellular automaton, produced by a simple recursive formula

The Fibonacci sequence is another popular example of unexpected complexity. Based on a very short recursive equation, the sequence generates a pattern of incremental increase which can be visualized as a complex spiral pattern, resembling a snail house’s design and many other patterns in nature. A combination of Fibonacci spirals, for example, can resemble the motif of the head of a sunflower. A thorough understanding of this ‘simple’ Fibonacci sequence is also sufficient to model some fundamental but important dynamics of systems as complex as the stock market and the global economy.

Sunflower head showing a Fibonacci sequence pattern

Traditional software is many orders of magnitude higher in complexity than basic mathematical formulae, and thus many orders of magnitude less predictable. Artificial general intelligence may be expected to work with even more complex rules than low-level computer programs, of a comparable complexity as natural human language, which would classify it yet several orders of magnitude higher in complexity than traditional software. The estimated security implications are not yet researched systematically, but are likely as hard as one may expect now.

Practical security is not about achieving perfection, but about mitigation of risks to a minimum. A current consensus among strong AI researchers is that we can only improve the chances for an AI to be friendly, i.e. an AI acting in a secure manner and having a positive long-term effect on humanity rather than a negative one [5], and that this must be a crucial design aspect from the beginning on. Research into Friendly AI started out with a serious consideration of the Asimov Laws of robotics [6] and is based on the application of probabilistic models, cognitive science and social philosophy to AI research.

Many researchers who believe in the viability of AGI take it a step further and predict a technological singularity. Just like the assumed physical singularity that started our universe (the Big Bang), a technological singularity is expected to increase the rate of technological progress much more rapidly than what we are used to from the history of humanity, i.e. beyond the current ‘laws’ of progress. Another important notion associated with the singularity is that we cannot predict even the most fundamental changes occurring after it, because things would, by definition, progress faster than we are currently able to predict. Therefore, in a similar way in which we believe the creation of the universe depended on its initial condition (in the big bang case, the few physical constants from which the others can be derived), many researchers in this field believe that AI security strongly depends on the initial conditions as well, i.e. the design of the bootstrapping software. If we succeed in manufacturing a general-purpose decision-making mind, then its whole point would be self-modification and self-improvement. Hence, our direct control over it would be limited to its first iteration and the initial conditions of a strong AI, which could be influenced mostly by getting the initial iteration of its hard- and software design right.

Our approach to optimize those initial conditions must consist of working as careful as possible. Space technology is a useful example for this which points us into the general direction in which such development should go. In rocket science and space technology, all measurements and mathematical equations must be as precise as possible by our current technological standards. Also, multiple redundancies must be present for every system, since every single aspect of a system can be expected to fail. Despite this, many rocket launches still fail today, although we are steadily improving on error rates.

Additionally, humans interacting with an AGI may a major security risk themselves, as they may be convinced by an AGI to remove its limitations. Since an AGI can be expected to be very convincing if we expect it to exceed human intellect, we should not only focus on physical limitations, but making the AGI ‘friendly’. But even in designing this ‘friendliness’, the way our mind works is largely unprepared to deal with consequences of the complexity of an AGI, because the way we perceive and deal with potential issues and risks stems from evolution. As a product of natural evolution, our behaviour helps us dealing with animal predators, interacting in human societies and caring about our children, but not in anticipating the complexity of man-made machines. Natural behavioural traits of our human perception and cognition are a result of evolution, and are called cognitive biases.

Sadly, as helpful as they may be in natural (i.e., non-technological) environments, these are the very same behaviours which are often contra-productive when dealing with the unforeseeable complexity of our own technology and modern civilization. If you don’t really see the primary importance of cognitive biases to the security of future AI at this point, you’re probably in good company. But there are good reasons why this is a crucial issue that researchers, developers and users of future generations of general-purpose AI need to take into account. One of the major reason for founding the earlier-mentioned Singularity Institute for AI [3] was to get the basics right, including grasping the cognitive biases, which necessarily do influence the technological design of AGI.

What do these considerations practically imply for the design of strong AI? Some of the traditional IT security issues that need to be addressed in computer programs are: input validation, access limitations, avoiding buffer overflows, safe conversion of data types, setting resource limits, secure error handling. All of these are valid and important issues that must be addressed in any piece of software, including weak and strong AI. However, we must avoid underestimating the design goals for a strong AI, mitigating the risk on all levels from the beginning. To do this, we must care about more than the traditional IT security issues. An AGI will interface with the human mind, through text and direct communication and –interaction. Thus, we must also estimate the errors that we may not see, and do our best to be aware of flaws in human logic and cognitive biases, which may include:

  • Loss aversion: “the dis-utility of giving up an object is greater than the utility associated with acquiring it”.
  • Positive outcome bias: a tendency in prediction to overestimate the probability of good things happening to them
  • Bandwagon effect: the tendency to do (or believe) things because many other people do (or believe) the same.
  • Irrational escalation: the tendency to make irrational decisions based upon rational decisions in the past or to justify actions already taken.
  • Omission bias: the tendency to judge harmful actions as worse, or less moral, than equally harmful omissions (inactions).

Above cognitive biases are a modest selection from Wikipedia’s list [7], which knows over a hundred more. Struggling with some of the known cognitive biases in complex technological situations may be quite familiar to many of us, and the social components involved, from situations such as managing modern business processes to investing in the stock market. In fact, we should apply any general lessons learned from dealing with current technological complexity to AGI. For example, some of the most successful long-term investment strategies in the stock market are boring and strict, but based mostly on safety, such as Buffet’s margin of safety concept. With all factors gained from social and technological experience taken into account in an AGI design that strives to optimize both cognitive and IT security, its designers can still not afford to forget that perfect and complete security does remain an illusion.

References

[1] Chen, M., Chiu, A. & Chang, H., 2005. Mining changes in customer behavior in retail marketing. Expert Systems with Applications, 28(4), 773–781.
[2] Oliver, J., 1997. A Machine Learning Approach to Automated Negotiation and Prospects for Electronic Commerce. Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.9115 [Accessed Feb 25, 2011].
[3] The Singularity Institute for Artificial intelligence: http://singinst.org/
[4] For the Lifeboat Foundation’s dedicated program, see: https://lifeboat.com/ex/ai.shield
[5] Yudkowsky, E. 2006. Artificial Intelligence as a Positive and Negative Factor in Global Risk., Global Catastrophic Risks, Oxford University Press, 2007.
[6] See http://en.wikipedia.org/wiki/Three_Laws_of_Robotics and http://en.wikipedia.org/wiki/Friendly_AI, Accessed Feb 25, 2011
[7] For a list of cognitive biases, see http://en.wikipedia.org/wiki/Cognitive_biases, Accessed Feb 25, 2011