Toggle light / dark theme

A research group led by Prof. Chen Tao at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS), developed a novel soft self-healing and adhesive human-machine interactive touch pad based on transparent nanocomposite hydrogels, in cooperation with the researchers from the Beijing Institute of Nanoenergy and Nanosystems of CAS. The study was published in Advanced Materials.

With the rapid development of information technology and the Internet of things, flexible and wearable electronic devices have attracted increasing attention. A is a requisite input device for a mobile phone, smart appliance and point-of-information terminal. Indium tin oxide (ITO) has been used as the dominant transparent conductive film for manufacturing commercial touch pads, which inevitably have obvious shortcomings, like fragility.

To improve the stretchability and biocompatibility of touch pads to allow their interaction with humans, the researchers at NIMTE developed highly transparent and stretchable polyzwitterion-clay nanocomposite hydrogels with transmittance of 98.8% and fracture strain beyond 1500%.

More than two-thirds of the energy used worldwide is ultimately ejected as “waste heat.” Within that reservoir of discarded energy lies a great and largely untapped opportunity, claim scientists in MIT’s Department of Nuclear Science and Engineering (NSE). As reported in a recent issue of Nature Communications, the MIT team—led by Assistant Professor Mingda Li, who heads NSE’s Quantum Matter Group—has achieved a breakthrough in thermoelectric generation, which offers a direct means of converting thermal energy, including waste heat, into electricity.

A , or difference, within a material such as a metal or semiconductor can, through a phenomenon known as the Seebeck effect, give rise to an that drives a current. “For many materials, the is too low to be useful,” explains NSE Research Scientist Fei Han. “Our goal is to find materials with conversion efficiencies high enough to make thermoelectric generation more practical.”

The efficiency of thermoelectric energy conversion is proportional to a material’s , electrical , and something called the “” squared; it is inversely proportional to the . Because efficiency goes up with temperature, most thermoelectric materials used today operate in the range of hundreds of degrees centigrade. “But in our lives, most of the stuff around us is at room temperature,” Han says. “That’s why we’re trying to discover new materials that work effectively at or below room temperature.”

The United States generates seven million tons of sewage sludge annually, enough to fill 2, 500 Olympic-sized swimming pools. While a portion of this waste is repurposed for manure and other land applications, a substantial amount is still disposed of in landfills. In a new study, Texas A&M University researchers have uncovered an efficient way to use leftover sludge to make biodegradable plastics.

In the September issue of the journal American Chemical Society (ACS) Omega, the researchers report that the bacterium Zobellella denitrificans ZD1, found in mangroves, can consume sludge and wastewater to produce polyhydroxybutyrate, a type of biopolymer that can be used in lieu of petroleum-based plastics. In addition to reducing the burden on landfills and the environment, the researchers said Zobellella denitrificans ZD1 offers a way to cut down upstream costs for bioplastics manufacturing, a step toward making them more competitively priced against regular plastics.

“The price of raw materials to cultivate biopolymer-producing bacteria accounts for 25–45% of the total production cost of manufacturing bioplastics. Certainly, this cost can be greatly reduced if we can tap into an alternate resource that is cheaper and readily obtainable,” said Kung-Hui (Bella) Chu, professor in the Zachry Department of Civil and Environmental Engineering. “We have demonstrated a potential way to use municipal wastewater-activated sludge and agri-and aqua-culture industrial wastewater to make biodegradable plastics. Furthermore, the does not require elaborate sterilization processes to prevent contamination from other microbes, further cutting down operating and production costs of bioplastics.”

Am I reading this wrong? Sunelight is literally a cure / weapon against corona? Or am I missing something / making an incorrect logical link?


Researchers from Tel Aviv University (TAU) have proven that the coronavirus can be killed efficiently, quickly, and cheaply using ultraviolet (UV) light-emitting diodes (UV-LEDs). They believe that the UV-LED technology will soon be available for private and commercial use.

This is the first study conducted on the disinfection efficiency of UV-LED irradiation at different wavelengths or frequencies on a virus from the family of coronaviruses. The study was led by Professor Hadas Mamane, Head of the Environmental Engineering Program at TAU’s School of Mechnical Engineering, Iby and Aladar Fleischman Faculty of Engineering. The article was published in November 2020 issue of the Journal of Photochemistry and Photobiology B: Biology.

“The entire world is currently looking for effective solutions to disinfect the coronavirus,” said Professor Mamane. “The problem is that in order to disinfect a bus, train, sports hall, or plane by chemical spraying, you need physical manpower, and in order for the spraying to be effective, you have to give the chemical time to act on the surface. Disinfection systems based on LED bulbs, however, can be installed in the ventilation system and air conditioner, for example, and sterilize the air sucked in and then emitted into the room.

Andrew Glester reviews Not Necessarily Rocket Science: a Beginner’s Guide to Life in the Space Age by Kellie Gerardi

When the Apollo 11 astronauts landed on the Moon in 1969 the whole world stopped, just for a moment, and looked up. We stepped out into the universe and firmly entered the Space Age, which had begun with Sputnik just 12 years earlier. For many Physics World readers, the scientific and engineering exploits of those early achievements are a source of intrigue and no little excitement. From those crackled first words on the Moon, to images of the boot print in the lunar surface, or the new perspective of our world – the fragile blue marble suspended in darkness – humanity’s most impressive engineering effort has had a huge impact on our collective consciousness.

Commercial spaceflight industry professional and science communicator Kellie Gerardi was one of the many who wanted to be part of the nascent Space Age. But with a degree in film studies rather than aerospace engineering, her non-traditional path in the space industry is a key theme of her new book Not Necessarily Rocket Science: a Beginner’s Guide to Life in the Space Age. With more than 122, 000 followers on Instagram, Gerardi is something of a social-media star, and her book serves as part mission statement, part witness statement and part manifesto. They say that those converted to a cause are often the most evangelical and Not Necessarily Rocket Science brims with Gerardi’s passion – not just for the science and engineering of space exploration, but also for its democratization.

Circa 2006 o.,o.


Researchers at the National Institute of Standards and Technology and the University of Colorado at Boulder have designed a carbon nanotube knife that, in theory, would work like a tight-wire cheese slicer.

In a paper presented this month at the 2006 International Mechanical Engineering Congress and Exposition, the research team announced a prototype nanoknife that could, in the future, become a tabletop tool of biology, allowing scientists to cut and study cells more precisely than they can today.

For years, biologists have wrestled with conventional diamond or glass knives, which cut frozen cell samples at a large angle, forcing the samples to bend and sometimes later crack. Because carbon nanotubes are extremely strong and slender in diameter, they make ideal materials for thinly cutting precise slivers of cells. In particular, scientists might use the nanoknife to make 3D images of cells and tissues for electron tomography, which requires samples less than 300 nanometers thick.

Microsoft Health-Tech Vision


Dr. James Weinstein, is Senior Vice President, Microsoft Healthcare, where he is in charge of leading strategy, innovation and health equity functions.

Prior to Microsoft, Dr. Weinstein was president and CEO of Dartmouth-Hitchcock Health, a $2.0 billion academic medical center in Northern New England, where he led the organization to adopt a population health model, including the transition from fee-for-service toward global payments.

Prior to becoming CEO, Dr. Weinstein served as president of Dartmouth-Hitchcock Clinic and was director of The Dartmouth Institute for Health Policy and Clinical Practice (TDI), home of the Dartmouth Atlas of Health Care, which for decades has documented the ongoing variations in health care delivery across the United States.

Dr. Weinstein is a founding member and the inaugural executive director of the National High Value Healthcare Collaborative, along with Mayo Clinic, Intermountain Healthcare, The Dartmouth Institute, and Denver Health. The Collaborative is a partnership of health systems that has taken on the challenge of improving the quality of care while lowering costs on a national scale.

Dr. Weinstein is a member of the National Academies of Sciences, Engineering, and Medicine and held the Peggy Y. Thomson Chair in the Evaluative Clinical Sciences at the Geisel School of Medicine while at Dartmouth; he’s a Senior Fellow, for the Healthcare Center and Clinical Professor Tuck School of Business at Dartmouth and a Clinical Professor at the Kellogg School of Business, Northwestern University.

Dr. Weinstein is a member of Special Medical Advisory Group for the national Veteran’s Administration. He serves on the Boards of Trustees for the Max Planck Florida Institute for Neuroscience, the Intermountain Health System, and IMAGINECARE, a company he started while CEO to use remote sensing to manage patients outside the traditional brick-and-mortar medical system and serves on several other boards.

Throughout his career as a researcher and renowned spine surgeon, Dr. Weinstein has received more than $70 million in federal funding and published more than 325 peer-reviewed articles and continues as Editor in Chief, Spine. He also serves on the Board of Advanced Regenerative Medicine Institute (ARMI/BioFAB), a Department of Defense (DoD) program using stem cells and various bio-substrates to print artificial organs.

To visually illustrate the risk of airborne transmission in real time, The Washington Post used a military-grade infrared camera capable of detecting exhaled breath. Numerous experts — epidemiologists, virologists and engineers — supported the notion of using exhalation as a conservative proxy to show potential transmission risk in various settings.

“The images are very, very telling,” said Rajat Mittal, a professor of mechanical engineering in Johns Hopkins University’s medical and engineering schools and an expert on virus transmission. “Getting two people and actually visualizing what’s happening between them, that’s very invaluable.”

Drexel University researchers are one step closer to offering a new treatment for the millions of patients who suffer from slow-healing, chronic wounds. The battery-powered applicator — as small and light as a watch — is the first portable and potentially wearable device to heal wounds with low-frequency ultrasound.

The National Institutes of Health (NIH) has awarded the research team an estimated $3 million to test the therapy on 120 patients over the next five years. By using diagnostic monitoring of blood flow in the wound tissue, the clinical trial will also determine how nutrition and inflammation impact wound closure, making treatment customization a possibility.

The project is an interdisciplinary collaboration between Drexel’s School of Biomedical Engineering, Science and Health Systems, the College of Medicine and the College of Nursing and Health Professions.

The organ-on-a-chip (OOAC) is in the list of top 10 emerging technologies and refers to a physiological organ biomimetic system built on a microfluidic chip. Through a combination of cell biology, engineering, and biomaterial technology, the microenvironment of the chip simulates that of the organ in terms of tissue interfaces and mechanical stimulation. This reflects the structural and functional characteristics of human tissue and can predict response to an array of stimuli including drug responses and environmental effects. OOAC has broad applications in precision medicine and biological defense strategies. Here, we introduce the concepts of OOAC and review its application to the construction of physiological models, drug development, and toxicology from the perspective of different organs. We further discuss existing challenges and provide future perspectives for its application.