Toggle light / dark theme

**Spanish architect Alberto Villanueva’s Mars Utopia concept would see the planet transformed into an inhabitable environment using towers formed by bacteria**

Villanueva, who works at Idea Architecture Office, created the project while completing a masters in Environment Design at London’s Ravensbourne College. “As an architect I am worried about the overpopulation issue”. “I was studying how the most populated cities around the world are growing non-stop. At the same time I realised that at least 30 per cent of territories are in extreme environments and I wanted to understand how, with my responsibility as an architect, I could think in new ways to build in these areas,” he added.

![enter image description here](http://static.dezeen.com/uploads/2016/01/Mars-Utopia_Alberto-Villanueva-Galindo_Idea-Architecture-Office_space_dezeen_1568_3.jpg “enter image title here”)

Read more

DARPA funds the Atoms-to-Products program that aims to maintain quantum nanoscale properties at the millimeter scale of microchips.

The main goal of the atoms-to-products program is to create technology and processes needed to create nanometer-scale pieces, with dimensions almost the size of atoms, into components and materials only millimeter scale in size. And to spur developments in the program DARPA has now posed the challenge to 10 laboratories across the nation.

To get the full benefits of nanoscale engineering at the millimeter scale, the organization has partnered with Intelligent Materials Solutions. “Our initial project will be to control infrared light by assembling nanoscale particles into finished components that are one million times larger,” explains Adam Gross, the team leader working closely with Christopher Roper to bring the Atoms-to Products project to fruition.

Read more

Rollins, who has a Ph.D. in veterinary medicine, took some time to talk about genetic engineering, the future of humanity and the ethical limits of science.

(This Q&A has been edited for length and clarity.)

Live Science: A quote from “The Bone Labyrinth” reads, “Research today has become more about seeing if something can be done versus judging if it should. It’s knowledge for the sake of knowledge, regardless of the impact on the world.” Is that you speaking? Is that what you personally believe?

James Rollins: Yes, I believe that. I think sometimes, the reach of science is faster than its capacity to grasp. Genetic engineering is changing the world so fast right now. The CRISPR-Cas9 technique can allow us to pluck a single DNA unit out and replace it with great precision. And one of the people I interviewed in the research for this book told me that we now have the ability to do germline editing, where anyone with a basic biology degree and familiarity with embryos can alter an embryo pretty easily. And that’s something that’s relatively new. It’s just in the last five to 10 years that that’s been developed.

Read more

The dream of melding biological and man-made machinery is now a little more real with the announcement that Columbia Engineering researchers have successfully harnessed a chemical energy-producing biological process to power a solid state CMOS integrated circuit.

According to study lead professor Ken Shepard, this is the world’s first successful effort to isolate a biological process and use it to power an integrated circuit, much like the ones we use in phones and computers.

The researchers developed the system by using an artificially created lipid bilayer membrane containing naturally occurring ion pumps, which are powered by the biological world’s “energy currency molecule,” ATP (adenosine triphosphate). ATP is the coenzyme that transfers chemical energy between living cells. It is an end product of processes such as photosynthesis and cellular respiration, and it powers the mechanical work of living systems such as cell division and muscle contraction.

Read more

China wants to be the leading force in manned space exploration, and is exploring sending people to the far side of the moon, Mars, asteroids, and further into deep space.

Becoming the second largest economy in the world and an emerging superpower of its own, China wishes to add deep space exploration into its achievement portfolio. Besides the ongoing moon exploration, its scientists are considering going deeper into the solar system, including Mars, asteroids, and even manned deep-space mission. Liu Jizhong, director of the lunar exploration program and space engineering center, pointed out that China has to be more pioneering, tackling problems such as high speed deep space exploration, energy and power generation, space robot development, and more. He also said that China must cooperate with others as space exploration is an undertaking shared by the entire human species.

China currently intends to explore the far side of the moon, something that has never been done before. It would require a relay satellite for communication and navigation on Lagrange point, where the satellite could orbit within the combined gravitational pull of the Earth-moon system, as said by Zhang Lihua of China Spacesat Co. While China believes that robots are critical to the mission, it also believes that these trips must be manned in order to effectively leverage human decision-making. China also says they are designing footed robots to explore asteroids and better understand their material composition.

Read more

Imagine having a sunny dry deck that descends to become a relaxing in-ground pool at the push of a button. The engineers at Agor Creative Engineering specialize in just such an experience. The movable pool floor can submerge below water, or rise above it to become a sturdy deck. By covering the pool when not in use, it improves pool safety, protecting children and pets from falling in.

Produced by Rob Ludacer

Follow TI: On Facebook

Read more

A researcher at Singapore’s Nanyang Technological University (NTU) has developed a new technology that provides real-time detection, analysis, and optimization data that could potentially save a company 10 percent on its energy bill and lessen its carbon footprint. The technology is an algorithm that primarily relies on data from ubiquitous devices to better analyze energy use. The software uses data from computers, servers, air conditioners, and industrial machinery to monitor temperature, data traffic and the computer processing workload. Data from these already-present appliances are then combined with the information from externally placed sensors that primarily monitor ambient temperature to analyze energy consumption and then provide a more efficient way to save energy and cost.

The energy-saving computer algorithm was developed by NTU’s Wen Yonggang, an assistant professor at the School of Computer Engineering’s Division of Networks & Distributed Systems. Wen specializes in machine-to-machine communication and computer networking, including looking at social media networks, cloud-computing platforms, and big data systems.

Most data centers consume huge amount of electrical power, leading to high levels of energy waste, according to Wen’s website. Part of his research involves finding ways to reduce energy waste and stabilize power systems by scaling energy levels temporally and spatially.

Read more

I’ve been increasingly interested in translated science fiction novels, and one of the best ones that I picked up this year was Taiyo Fujii’s debut Gene Mapper.

Gene Mapper takes place in a future where augmented reality and genetic engineering is commonplace. When a freelance gene mapper named Hayashida finds that a project that he had worked on is collapsing, he believes that it’s being sabotaged. Determined to fix it, he travels to Vietnam where he finds that there’s more behind the problem than he initially thought.

You can read a tie-in story over on Lightspeed Magazine, ‘Violation of the TrueNet Security Act’.

Read more

While the global academic discussion focuses on the coverage of existential risks associated with the rise of a Skynet equivalent artificial intelligence; it is worth mentioning that there are divergent advances in biotech whichare as alarming and urgent as the rise of an all omnipotent and omnipresent AI. Those issues should be directed and scanned under a microscope because they are at our doorstep. We should note that the application of “wind tunnelling” towards new technologies is necessary to prepare for the future, and subsequently, we should mitigate the risks and anticipate the greatest threats associated with technology XYZ as well as the biggest opportunities.

If we recall the year 2011, virologist Ron Fouchier presented his enhanced version of the H5N1 which could create a pandemic of massive impact wiping out half the world population if not more. Fouchier was experimenting with the avian flu virus searching for virulence enhancing evolution paths. What he did is spread the virus throughout a population of ferrets, and it reproduced with an increase in its ability to adapt at each transformation; in ten generations, the airborne version gained so much in virility that it had the potential power to kill half of the human population.

A year after that, in 2012, CRISPR/Cas9 genome engineering/editing tool was first shown to work in human cell culture. It allows scientists to edit genomes which binds and splices DNA at specific locations. The complex can be programmed to target a problematic gene, which is then replaced or repaired by another molecule introduced at the same time. A highly precise method. In the past years there has been much researchwere many researches conducted, e.g. the first monkeys with targeted mutations were born, and even editing methods for preventing HIV-1 infection in humans. What this means is the introduction of a complex randomness factor. If in the past a handful of people had access to genomic iterations and experimentation; now this fact is about to be change, releasing the proverbial genie from the bottle, with little ability to control it.

Read more