Toggle light / dark theme

A study led by researchers from the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory and the University of California, Los Angeles has demonstrated a new, efficient way to accelerate positrons, the antimatter opposites of electrons. The method may help boost the energy and shrink the size of future linear particle colliders — powerful accelerators that could be used to unravel the properties of nature’s fundamental building blocks.

The scientists had previously shown that boosting the energy of charged particles by having them “surf” a wave of , or plasma, works well for . While this method by itself could lead to smaller accelerators, electrons are only half the equation for future colliders. Now the researchers have hit another milestone by applying the technique to positrons at SLAC’s Facility for Advanced Accelerator Experimental Tests (FACET), a DOE Office of Science User Facility.

“Together with our previous achievement, the new study is a very important step toward making smaller, less expensive next-generation electron-positron colliders,” said SLAC’s Mark Hogan, co-author of the study published today in Nature. “FACET is the only place in the world where we can accelerate positrons and electrons with this method.”

Read more

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination of properties that are not typically seen together: high conductivity, flexibility, and room-temperature self-healing. The gel could potentially offer self-healing for a variety of applications, including flexible electronics, soft robotics, artificial skins, biomimetic prostheses, and energy storage devices.

The researchers, led by Guihua Yu, an assistant professor at the University of Texas at Austin, have published a paper on the new self-healing in a recent issue of Nano Letters.

The new gel’s properties arise from its hybrid composition of two gels: a supramolecular gel, or ‘supergel’, is injected into a conductive polymer hydrogel matrix. As the researchers explain, this “guest-to-host” strategy allows the chemical and physical features of each component to be combined.

Read more

The most powerful laser beam ever created has been recently fired at Osaka University in Japan, where the Laser for Fast Ignition Experiments (LFEX) has been boosted to produce a beam with a peak power of 2,000 trillion watts – two petawatts – for an incredibly short duration, approximately a trillionth of a second or one picosecond.

Values this large are difficult to grasp, but we can think of it as a billion times more powerful than a typical stadium floodlight or as the overall power of all of the sun’s solar energy that falls on London. Imagine focusing all that solar power onto a surface as wide as a human hair for the duration of a trillionth of a second: that’s essentially the LFEX laser.

Read more

If you pry open one of today’s ubiquitous high-tech devices—whether a cellphone, a laptop, or an electric car—you’ll find that batteries take up most of the space inside. Indeed, the recent evolution of batteries has made it possible to pack ample power in small places.

But people still always want their devices to last even longer, or go further on a charge, so researchers work night and day to boost the power a given size can hold. Rare, but widely publicized, incidents of overheating or combustion in lithium-ion batteries have also highlighted the importance of safety in battery technology.

Now researchers at MIT and Samsung, and in California and Maryland, have developed a new approach to one of the three basic components of batteries, the . The new findings are based on the idea that a solid electrolyte, rather than the liquid used in today’s most common rechargeables, could greatly improve both device lifetime and safety—while providing a significant boost in the amount of power stored in a given space.

Read more

Exploring space while seated on Earth, gazing up on screens in museum theaters or at home via VR headsets. is exciting but the top imagination-grabber is the very idea of finding a way to access space. This is the present-day realm of creative thinking over space elevators, in the use of a giant tower to carry us to space.

Scientists working on space elevators are thinking about materials and designs that can be used to access space as an alternative to rocket technology. A sign of the times is the upcoming Space Elevator Conference 2015 which takes place this month in Seattle.

Imagine, said The Spaceward Foundation, the , serving as a track on which electric vehicles called “climbers” can travel up and down carrying about 10 tons of payload.“There are no intense gravity-loads during the trip, no acoustic vibration, no onboard fuel, nor any of the rest of the drama (and cost) associated with rocket launches,” it added.

Read more

A cutaway view of the proposed ARC reactor (credit: MIT ARC team)

MIT plans to create a new compact version of a tokamak fusion reactor with the goal of producing practical fusion power, which could offer a nearly inexhaustible energy resource in as little as a decade.

Fusion, the nuclear reaction that powers the sun, involves fusing pairs of hydrogen atoms together to form helium, accompanied by enormous releases of energy.

The new fusion reactor, called ARC, would take advantage of new, commercially available superconductors — rare-earth barium copper oxide (REBCO) superconducting tapes (the dark brown areas in the illustration above) — to produce stronger magnetic field coils, according to Dennis Whyte, a professor of Nuclear Science and Engineering and director of MIT’s Plasma Science and Fusion Center.

Read more