Toggle light / dark theme

I do believe we’re within a 7 to 8 yr window at this point with Quantum hitting the broader main stream computing infrastructure. However, we have banks in Europe that have been using the technology for network communications, Los Alamos Labs experimenting since late 2011 with Quantum Internet, now China is launching their own Quantum Satellite for wireless communications; so I do suggest a strategy needs to be developed over the next 2 to 3 yrs for government & industry around how to manage & plan for deployment of Quantum especially with China & Russia’s interest.


New research demonstrating that quantum computing is now just an engineering challenge moves the possibility of encryption-cracking machines to the front burner.

Read more

Let’s just hypothesize a little on this topic: let’s say Apple goes ahead and gives in to the US Government and enables government to access the phone’s info. Does Apple have any protection in the future from lawsuits from it’s customers in situations where their own customers information is hacked by criminals and published to the world or used for illegal activities? Because I do see in the future more lawsuits coming at the tech companies for not ensuring their platforms and devices are un-hackable. So, if the government has its way; what protections does tech have now with any future lawsuits by consumers and other businesses?


His comments come during the ongoing legal battle over an iPhone used by Syed Farook, one of the individuals responsible for the San Bernardino, Calif. mass shooting December 2. “I don’t think requiring backdoors with encryption is either going to be an effective way to increase security or is really the right thing to do for just the direction that the world is going to”.

This is because First Amendment treats computer code as speech and according to Apple, meeting the demands of the government would be equivalent to “compelled speech and viewpoint discrimination”.

The Electronics Frontier Foundation (EFF) has said it will be filing an amicus brief in support of Apple with the courts.

Read more

Much of the encryption world today depends on the challenge of factoring large numbers, but scientists now say they’ve created the first five-atom quantum computer with the potential to crack the security of traditional encryption schemes.

In traditional computing, numbers are represented by either 0s or 1s, but quantum computing relies on atomic-scale units, or “qubits,” that can be simultaneously 0 and 1 — a state known as a superposition that’s far more efficient. It typically takes about 12 qubits to factor the number 15, but researchers at MIT and the University of Innsbruck in Austria have found a way to pare that down to five qubits, each represented by a single atom, they said this week.

Using laser pulses to keep the quantum system stable by holding the atoms in an ion trap, the new system promises scalability as well, as more atoms and lasers can be added to build a bigger and faster quantum computer able to factor much larger numbers. That, in turn, presents new risks for factorization-based methods such as RSA, used for protecting credit cards, state secrets and other confidential data.

Read more

Much of the Quantum Internet technology has been in testing at Los Alamos. And, China has stepped up it’s own efforts in Quantum Internet and Computing in order to replace their whole infrastructure before the US and anyone else does due to both the opportunity as well as the threat of not being on Quantum.
first.

The next 5 years will prove for US and it’s allies a critical period. And, their real challenge is how quickly the US can mature the technology & how soon they can onboard everyone that are high targets for less friendly government backed hackers.


The researchers from Massachusetts Institute of Technology (MIT) call their scalable quantum computer ‘the beginning of the end for encryption schemes’.

Read more

Interesting Question to ask.


The battle between the FBI and Apple over the unlocking of a terrorist’s iPhone will likely require Congress to create new legislation. That’s because there really aren’t any existing laws which encompass technologies such as these. The battle is between security and privacy, with Silicon Valley fighting for privacy. The debates in Congress will be ugly, uninformed, and emotional. Lawmakers won’t know which side to pick and will flip flop between what lobbyists ask and the public’s fear du jour. And because there is no consensus on what is right or wrong, any decision they make today will likely be changed tomorrow.

This is a prelude of things to come, not only with encryption technologies, but everything from artificial intelligence to drones, robotics, and synthetic biology. Technology is moving faster than our ability to understand it, and there is no consensus on what is ethical. It isn’t just the lawmakers who are not well-informed, the originators of the technologies themselves don’t understand the full ramifications of what they are creating. They may take strong positions today based on their emotions and financial interests, but as they learn more, they too will change their views.

Imagine if there was a terror attack in Silicon Valley — at the headquarters of Facebook or Apple. Do you think that Tim Cook or Mark Zuckerberg would continue to put privacy ahead of national security?

Read more

Something for everyone to keep a closer eye on in the coming year/s — And, they are indeed well on their way with Quantum and their partnership with Australia. Australia (as we recall) has been the one country outside the US and Canada that has made incredible progress in Quantum Computing especially introducing in Nov 2015 their discovery in developing a machine language for the Quantum platform.


BEIJING (AP) — China’s government has highlighted big data, encryption technology and “core technologies” such as semiconductors as the key elements of its push to grow into a tech powerhouse, according to a new five-year plan released Saturday that envisages the Internet as a major source of growth as well as a potential risk.

Read more

Replacing traditional encryption schemes.


What are the prime factors, or multipliers, for the number 15? Most grade school students know the answer — 3 and 5 — by memory. A larger number, such as 91, may take some pen and paper. An even larger number, say with 232 digits, can (and has) taken scientists two years to factor, using hundreds of classical computers operating in parallel.

Read more

Glad to see this article get published because it echoes many of the concerns established around China and Russia governments and their hackers having their infrastructures on Quantum before US, Europe, and Canada. Computer scientists at MIT and the University of Innsbruck say they’ve assembled the first five quantum bits (qubits) of a quantum computer that could someday factor any number, and thereby crack the security of traditional encryption schemes.


Shor’s algorithm performed in a system less than half the size experts expected.

Read more

Like we have been saying things are getting more and more tricky now with Quantum. China’s government supported hackers are going to love this as well as their own military intel.


Quess could hold the key TO uncrackable communications

By Jeffrey Lin and P.W. Singer

Read more

So long pseudo-random number generator. Quantum mechanics brought us true randomness to power our crypto algorithms, and is strengthening encryption in the cloud, the datacenter, and the Internet of Things.

Read more