Toggle light / dark theme

We definitely need precision medicine. If you don’t believe it is worth that; then I have a few widows & widowers who you should speak to; I have parents that you should speak with; I have a list of sisters & brothers that you should speak with; and I have many many friends (including me) that you should speak with about how we miss those we love because things like precision medicine wasn’t available and could have saved their lives.


Precision medicine is the theme for the 10th annual symposium of the Johns Hopkins Institute for Nano Biotechnology, Friday, April 29, 2016 at 9 a.m. in the Owens Auditorium at the School of Medicine. This year’s event is cohosted by Johns Hopkins Individualized Health Initiative (also known as Hopkins in Health) and features several in Health affiliated speakers.

By developing treatments that overcome the limitations of the one-size-fits-all mindset, precision medicine will more effectively prevent and thwart disease. Driven by data provided from sources such as electronic medical records, public health investigations, clinical studies, and from patients themselves through new point-of-care assays, wearable sensors and smartphone apps, precision medicine will become the gold standard of care in the not-so-distant future. Before long, we will be able to treat and also prevent diseases such as diabetes, Alzheimer’s disease, heart disease, and cancer with regimes that are tailor-made for the individual.

Hopkins in Health is a signature initiative of Johns Hopkins University’s $4.5 billion Rising to the Challenge campaign is a collaboration among three institutions: the University, the Johns Hopkins Health System, and the Applied Physics Laboratory. These in Health researchers combine clinical, genetic, lifestyle, and other data sources to create innovative tools intended to improve decision-making in the prevention and treatment of a range of conditions, including cancer, cardiovascular disease, autoimmune disorders, and infectious disease. The goal is to “provide the right care to the right person at the right time.”

Read more

Is AR your new diet plan?


The future of dining is here, and it’s all about molecular gastronomy, augmented reality headsets and multi-textured algae — and it’s virtually no calories.

Researchers at Project Nourished have found a way to merge the taste, feel and smell of food using atomizers, virtual reality headsets, a device that mimics chewing sounds, a glass with built-in sensors, a specialized utensil, and a 3D-printed food cube. The goal is to trick the user’s mind and palate into thinking they’re experiencing something entirely different than what they’re actually eating.

According to CEO Jinsoo An, the project was born out of his frustrations with his own gluten and soy sensitivities. He wants to help people struggling with weight management, diabetes and other food intolerances, so they can enjoy foods they might not otherwise be able to consume.

Read more

His lab is dedicated to an idea called frugal innovation: “How do you do very high-level science or engineering with very little?” said Thuo, an assistant professor of materials science and engineering at Iowa State University and an associate of the U.S. Department of Energy’s Ames Laboratory. “How can you solve a problem with the least amount of resources?”

That goal has Thuo and his research group using their materials expertise to study soft matter, single-molecule electronics and renewable energy production. A guiding principle is that, whenever possible, nature should do part of the work.

“Nature has a beautiful way of working for us,” he said. “Self-assembly and ambient oxidation are great tools in our designs.”

Read more

Many think author, inventor and data scientist Ray Kurzweil is a prophet for our digital age. A few say he’s completely nuts. Kurzweil, who heads a team of more than 40 as a director of engineering at Google, believes advances in technology and medicine are pushing us toward what he calls the Singularity, a period of profound cultural and evolutionary change in which computers will outthink the brain and allow people—you, me, the guy with the man-bun ahead of you at Starbucks—to live forever. He dates this development at 2045.

Raymond Kurzweil was born February 12, 1948, and he still carries the plain, nasal inflection of his native Queens, New York. His Jewish parents escaped Hitler’s Austria, but Kurzweil grew up attending a Unitarian church. He worshipped knowledge above all, and computers in particular. His grandmother was one of the first women in Europe to earn a Ph.D. in chemistry. His uncle, who worked at Bell Labs, taught Ray computer science in the 1950s, and by the age of 15, Kurzweil was designing programs to help do homework. Two years later, he wrote code to analyze and create music in the style of various famous composers. The program won him the prestigious Westinghouse Science Talent Search, a prize that got the 17-year-old an invitation to the White House. That year, on the game show I’ve Got a Secret, Kurzweil pressed some buttons on a data processor the size of a small car. It coughed out original sheet music that could have been written by Brahms.

After earning degrees in computer science and creative writing at MIT, he began to sell his inventions, including the first optical character recognition system that could read text in any normal font. Kurzweil knew a “reading machine” could help the blind, but to make it work, he first had to invent a text-to-speech synthesizer, as well as a flatbed scanner; both are still in wide use. In the 1980s Kurzweil created the first electronic music keyboard to replicate the sound of a grand piano and many other instruments. If you’ve ever been to a rock concert, you’ve likely seen the name Kurzweil on the back of a synthesizer.

Read more

They deserve it too.


X2 Biosystems has received the Society for Brain Mapping and Therapeutics (SBMT) 2016 Pioneer in Healthcare Technology Innovations Award for developing its next-generation head impact measurement sensor technology, the company said.

X2´s “X-Patch” wearable impact sensor has become widely deployed and tested head impact monitoring device, used in a continually expanding range of athletic activities from football (youth, high school, collegiate, pro) to hockey, soccer, lacrosse, rugby, Australian rules football, baseball, field hockey, wrestling, boxing, taekwondo, mixed martial arts, skiing and BMX cycling.

The X-Patch is also being actively evaluated for use in military training applications.

Read more

Nice


HYDERABAD: In an initiative that may improve farm productivity, Indian Institute of Technology (IIT), Mumbai and Professor Jayashankar Telangana State Agriculture University (PJTSAU), Hyderabad have joined hands to develop nanosensors that can read the percentage of moisture and nutrients in the soil. This new research is expected to provide an important technological innovation in the field of agriculture. This is for the first time an IIT is collaborating with an agricultural university to devise solutions for the farmers.

“While we were exploring the possibilities of nano technology in various fields, the idea of using it in agriculture sector struck us. Thanks to the interest shown by some agricultural scientists at PJTSAU, we decided to develop nanosensors which can calculate the moisture content of the soil. There is a need for IITs to work for solving the problems faced by farmers and this is a step in that direction,” said V Ramgopal Rao, director of IIT Delhi, who was instrumental in initiating the research project, while he was the chief investigator of Centre of Excellence in Nanoelectronics Project at IIT, Mumbai.

While IIT, Mumbai will develop the nano soil sensors, PJTSAU will serve as the testing partner and conduct field tests to assess the efficacy of nanosensors. Already, funds have been allotted by IIT for the research project and a team of agricultural scientists and technologists has been formed to work on the project.

Read more

California Polytechnic State University researchers propose a system capable of probing the molecular composition of cold solar system targets such as asteroids, comets, planets and moons from a distant vantage.

Their concept utilizes a directed energy beam to vaporize or sublimate a spot on a distant target, such as from a spacecraft near the object. With sufficient flux, our published results indicate that the spot temperature rises rapidly, and evaporation of materials on the target surface occurs (Hughes et al., 2015; Lubin and Hughes, 2015; Lubin et al., 2014). The melted spot serves as a high-temperature blackbody source, and ejected material creates a molecular plume in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. They envision a spacecraft that could be sent to probe the composition of a target asteroid, comet or other planetary body while orbiting the targeted object. The spacecraft would be equipped with an array of lasers and a spectrometer, powered by photovoltaics. Spatial composition maps could be created by scanning the directed energy beam across the surface. Applying the laser beam to a single spot continuously produces a borehole, and shallow sub-surface composition profiling is also possible.

Their initial simulations of laser heating, plume opacity, material absorption profiles and spectral detectivity show promise for molecular composition analysis. Such a system has compelling potential benefit for solar system exploration by establishing the capability to directly interrogate the bulk composition of objects from a distant vantage. They propose to develop models, execute preliminary feasibility analysis, and specify a spacecraft system architecture for a hypothetical mission that seeks to perform surface molecular composition analysis and mapping of a near-earth asteroid (NEA) while the craft orbits the asteroid.

Read more

University of Tokyo researchers have created an ultrathin and ultraflexible organic e-skin that supports PLED and OLED displays.

Researchers from the University of Tokyo have created a protective layer of organic material that’s ultrathin and ultraflexible. And the have demonstrated the material’s usefulness by making an OLED display that’s air-stable. This opens the possibility of developing better electronic skin displays, the next major leap in wearable technology.

The thickness (or rather, thinness) and flexibility of wearable electronics is an essential factor in its further development. Plastic substrates are commonly used in the creation of such devices, which still require millimeter-scale thick glass. Also, whenever micrometer-scale and flexible organic materials are developed, they aren’t reliably stable when exposed to air.

Read more

Imagine shirts that act as antennas for smartphones or tablets, workout clothes that monitor fitness level or even a flexible fabric cap that senses activity in the brain!

All this will soon be possible as the researchers working on wearable electronics have been able to embroider circuits into fabric with super precision — a key step toward the design of clothes that gather, store or transmit digital information.

“A revolution is happening in the textile industry. We believe that functional textiles are an enabling technology for communications and sensing and one day, even for medical applications like imaging and health monitoring,” said lead researcher John Volakis from Ohio State University.

Read more