Toggle light / dark theme

As strange as it may sound, the universe actually may be a hologram, according to a recent study published in the journal Physical Review Letters.

Despite our knowledge of the universe, cosmologists have never been able to agree on a single unified model. This is because many current versions describe the cosmos with either general relativity or quantum theory, and neither of those work well together.

In an attempt to bridge this gap, a team of researchers from Canada, England, and the United States, argued that a holographic explanation of the universe could provide a set model, UPI reports. This is because it is able to account for irregularities in the echo of thermal energy leftover from the Big Bang, known as the cosmic microwave background.

Read more

There is much to still be learned around Quantum parallel states. We have just scratched the surface with QC and some of the parallel states and its tie to time travel which in the recent 1 1/2 years has uncovered many truths that we (including myself) thought were bogus or impossible.


As reported by Phys Org, a collaborative study involving researches from Canada, Italy and the UK may have provided the first detectable evidence indicating that our universe may in fact be a ‘vast and complex hologram’. It’s an idea that’s been around since the 1990s — that everything we see around us exists on a flat, 2D surface, but we see everything in 3D because the universe acts like one giant hologram.

To explain the concept better, the common analogy used is to imagine the holographic universe as if you were watching a 3D movie in a movie theater. As movie-watchers, we see images on the screen as having height, width, and depth, even if they’re being projected on a 2D screen. In the case of our universe, it’s a bit more complicated because we can’t just see things, we can touch things too, which makes our perceptions ‘real’.

A holographic universe is a concept that appeals to physicists because it can potentially reconcile inconsistencies between quantum mechanics and Einstein’s theory of general relativity. Because although Einstein’s theory can explain large-scale aspects of the universe, it breaks down at quantum levels. In other words, it can’t explain quantum mechanics. And that just won’t do when describing what the early universe was like.

Read more

Interesting write up some fiction and some non-fiction brought together on a common theory about Quantum. I do have a huge curiosity around the work going on the parallel states research and the job postings by some companies for psychics. Wouldn’t it be funny that if all these folks who thought they saw something like a spirit really did due to Quantum parallel states? What if Musk and others who believe we’re living in VR was actually true and was because of the same thing with the psychics? Who knows; but does make one think for a minute about what if.


The theoretical physicist has written a bold book that deals with the biggest questions, taking in quantum theory and free will along the way.

Read more

Watch out for the black holes in those QC chips.


Eindhoven professor Rembert Duine has proposed a way to simulate black holes on an electronic chip. This makes it possible to study fundamental aspects of black holes in a laboratory on earth. Additionally, the underlying research may be useful for quantum technologies. Duine (also working at Utrecht University) and colleagues from Chile published their results today in Physical Review Letters.

“Right now, it’s purely theoretical,” says Duine, “but all the ingredients already exist. This could be happening in a lab one or two years from now.” One possibility is in the group of Physics of Nanostructures in the Department of Applied Physics. According to Duine, in these labs experiments are being done that are necessary to create this type of black holes.

Event horizon

Black holes in space are so dense that nothing can escape their gravitational pull once it passes a point of no return called the event horizon. The researchers have now found a way to make such points of no return for spin waves, fluctuations that propagate in magnetic materials. When an electric current runs through the material, the electrons drag these waves along.

Read more

Monster black holes shooting jets of gamma-ray radiation right at us have been spotted farther away than ever before, dating back to when the universe was nearly one-tenth its current age.

The five distant objects, called gamma-ray blazars, deepen the mystery of how black holes so large could have formed so early in the universe’s history.

Roopesh Ojha, an astronomer at NASA’s Goddard Space Flight Center in Maryland, presented the new results during a press conference today (Jan. 30) at the American Physical Society meeting in Washington, D.C. The results will also be published in The Astrophysical Journal Supplement. [Found: Gamma-Ray Blazars Powered by ‘Supersized’ Black Holes (Video)].

Read more

Awesome! More news on the time crystals.


The source of time travel speculation lies in the fact that our best physical theories seem to contain no prohibitions on traveling backward through time. The feat should be possible based on Einstein’s theory of general relativity, which describes gravity as the warping of spacetime by energy and matter. An extremely powerful gravitational field, such as that produced by a spinning black hole, could in principle profoundly warp the fabric of existence so that spacetime bends back on itself. This would create a “closed timelike curve,” or CTC, a loop that could be traversed to travel back in time.

Experimenting With CTC’s

Single particles of light (photons) to simulate quantum particles travelling through time were just used by scientists from the University of Queensland, Australia. They showed that one photon can pass through a wormhole and then interact with its older self. Their findings were published in Nature Communications.

Read more

(Phys.org)—Physicists have proposed that violations of energy conservation in the early universe, as predicted by certain modified theories of quantum mechanics and quantum gravity, may explain the cosmological constant problem, which is sometimes referred to as “the worst theoretical prediction in the history of physics.”

The physicists, Thibaut Josset and Alejandro Perez at the University of Aix-Marseille, France, and Daniel Sudarsky at the National Autonomous University of Mexico, have published a paper on their proposal in a recent issue Physical Review Letters.

“The main achievement of the work was the unexpected relation between two apparently very distinct issues, namely the accelerated expansion of the universe and microscopic physics,” Josset told Phys.org. “This offers a fresh look at the cosmological constant problem, which is still far from being solved.”

Read more