Toggle light / dark theme

The international collaborative n_TOF, in which a group of University of Seville researchers participated, has made use of the unique capacities of three of the world’s nuclear facilities to carry out a new experiment aimed at finding an explanation of the cosmological lithium problem. This problem is among the still unresolved questions of the current standard description of the Big Bang. The new experimental results, their theoretical interpretations and their implications have been published in Physical Review Letters.

Read more

https://www.youtube.com/watch?v=n4YtQ-N_t84

When listening to world science festival’s latest episode on youtube, Pondering the Imponderables: The Biggest Questions of Cosmology, I found myself to be most in line with George F.R. Ellis’ line of thinking overall.


Big Bang cosmology, chemical and biological evolutionary theory, and associated sciences have been extraordinarily successful in revealing and enabling us to understand the development of the.

Cosmology is today a precision science with masses of high quality data every increasing our understanding of the physical universe, but paradoxically theoretical cosmology is simultaneously.

Professor George Ellis FRS Introduced by Prof. Alister McGrath Followed by a panel discussion with Prof. Ard Louis and Prof. Denis Noble Mathematical Institute, Oxford.

Read more

Since the 1970s, astronomers and physicists have been gathering evidence for the presence in the universe of dark matter: a mysterious substance that manifests itself through its gravitational pull. However, despite much effort, none of the new particles proposed to explain dark matter have been discovered. In a review that was published in Nature this week, physicists Gianfranco Bertone (UvA) and Tim Tait (UvA and UC Irvine) argue that the time has come to broaden and diversify the experimental effort, and to incorporate astronomical surveys and gravitational wave observations in the quest for the nature of dark matter.

Over the past three decades, the search for dark matter has focused mostly on a class of particle candidates known as weakly interacting massive particles (or WIMPs). WIMPs appeared for a long time as a perfect dark matter candidate as they would be produced in the right amount in the early universe to explain dark matter, while at the same time they might alleviate some of the most fundamental problems in the physics of elementary particles, such as the large discrepancy between the energy scale of weak interactions and that of .

Read more

Matter ejected from a spinning disc of doom surrounding a black hole a mere 15,000 light years away has produced some of the most energetic rays of light ever witnessed from an object of its kind.

The insanely powerful photons of gamma radiation were produced by a never-before-seen phenomenon surrounding a miniature quasar. The discovery could help us better understand what goes on deep in the chaotic heart of the Milky Way.

SS 433 is a smaller version of the kinds of maelstrom of death you’d find lurking at the core of most galaxies. It’s also in our neighbourhood, more or less, making it relatively easy to study.

Read more

Today, an international group of researchers, including Carnegie Mellon University’s Rachel Mandelbaum, released the deepest wide field map of the three-dimensional distribution of matter in the universe ever made and increased the precision of constraints for dark energy with the Hyper Suprime-Cam survey (HSC).

Read more