Toggle light / dark theme

More advancement in Quantum Computing — researchers in Finland have found a way to keep the processor chip cooled without causing disrupting computer operations which has been a big challenge for Quantum Chips.


AALTO, Finland, Feb. 11, 2016 — A thermal-transport method that uses photons as carriers has been demonstrated over 1-m distances. The fundamental advance in heat conduction could drive the development of quantum computers.

Read more

The late Supreme Court Justice Potter Stewart once said, “Ethics is knowing the difference between what you have a right to do and what is right to do.”

As artificial intelligence (AI) systems become more and more advanced, can the same statement apply to computers?

According to many technology moguls and policymakers, the answer is this: We’re not quite there yet.

Read more

Quantum Entanglement “Fluffy Bunny Style”.


UVM physicist wins NSF CAREER grant to study entanglement 02-08-2016 By Joshua E. Brown Two different ways in which atoms can be quantum entangled. Left: spatial entanglement where atoms in two separated regions share quantum information. Right: particle entanglement for identical atoms (colored here for clarity) due to quantum statistics and interactions.

Read more

Post-Human


Radically often it seems like something out of science fiction. But every day that passes we get closer to the technological singularity.

Visit: http://www.awarenessalgorithm.com/ ~ The awakening of the future …

Read more

“We will find new things everywhere we look.” –Hunter S. Thompson

At the rate of 21st century technological innovation, each year brings new breakthroughs across industries. Advances in quantum computers, human genome sequencing for under $1,000, lab-grown meat, harnessing our body’s microbes as drugs, and bionic eye implants that give vision to the blind —the list is long.

As new technologies push the boundaries of their respective industries, fields are now maturing, growing, and colliding with one another. This cross-pollination of ideas across industries and countries has changed the world—and will continue to—and it’s one of the reasons Singularity University exists.

Read more

Human and animal movements generate slight neural signals from their brain cells. These signals obtained using a neural interface are essential for realizing brain-machine interfaces (BMI). Such neural recording systems using wires to connect the implanted device to an external device can cause infections through the opening in the skull. One method of solving this issue is to develop a wireless neural interface that is fully implantable on the brain.

However, the neural interface implanted on the brain surface should be of small size and minimally invasive. Furthermore, it requires the integration of a power source, antenna for wireless communication, and many functional circuits.

Now, a research team at the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology has developed a wafer-level packaging technique to integrate a silicon large-scale integration (LSI) chip in a very thin film of a thickness 10 µm (Sensors, “Co-design method and wafer-level packaging technique of thin-film flexible antenna and silicon CMOS rectifier chips for wireless-powered neural interface systems”).

Wirelessly Supplying Power To Brain

Read more

Now, that’s a concept! Spray paint from a can that harnesses solar energy. Imagine, you can spray paint windows, patio tables, your car, a bike, etc. with Solar Spray Paint in a can; and watch your gadgets get charged. It is almost like the “Computer Screen in the Can” idea that I had last week. Geez, wonder if she could partner with me on that concept?


Researcher aims to engineer spray paint that can convert sun’s elusive energy to electricity.

Read more

NASA laser expert Mike Krainak and his team plan to replace portions of this fiber-optic receiver with an integrated-photonic circuit (its size will be similar to the chip he is holding) and will test the advanced modem on the International Space Station. (credit: W. Hrybyk/NASA)

A NASA team plans to build the first integrated-photonics modem, using an emerging, potentially revolutionary technology that could transform everything from telecommunications, medical imaging, advanced manufacturing to national defense.

The cell phone-sized device incorporates optics-based functions, such as lasers, switches, and fiber-optic wires, onto a microchip similar to an integrated circuit found in all electronics hardware.

The device will be tested aboard the International Space Station beginning in 2020 as part of NASA’s multi-year Laser Communications Relay Demonstration (LCRD). The Integrated LCRD LEO (Low-Earth Orbit) User Modem and Amplifier (ILLUMA) will serve as a low-Earth-orbit terminal for NASA’s LCRD, demonstrating another capability for high-speed, laser-based communications.

Read more

Stanford University PhD candidate, Song Han, who works under advisor and networking pioneer, Dr. Bill Dally, responded in a most soft-spoken and thoughtful way to the question of whether the coupled software and hardware architecture he developed might change the world.

In fact, instead of answering the question directly, he pointed to the range of applications, both in the present and future, that will be driven by near real-time inference for complex deep neural networks—all a roundabout way of showing not just why what he is working toward is revolutionary, but why the missing pieces he is filling in have kept neural network-fed services at a relative constant.

There is one large barrier to that future Han considers imminent—one pushed by an existing range of neural network-driven applications powering all aspects of the consumer economy and, over time, the enterprise. And it’s less broadly technical than it is efficiency-driven. After all, considering the mode of service delivery of these applications, often lightweight, power-aware devices, how much computation can be effectively packed into the memory of such devices—and at what cost to battery life or overall power? Devices aside, these same concerns, at a grander level of scale, are even more pertinent at the datacenter where some bulk of the inference is handled.

Read more