Toggle light / dark theme

How does the human brain collect, process and store the flow of data which it constantly encounters? How does it manage cognitive tasks, which require complex interaction between various areas of the brain and overload high performance computers that work much more quickly? Why can the brain cope with all of this using much less energy? It is the aim of the research team from Kiel led by Professor Hermann Kohlstedt, Head of the Nanoelectronics Department at Kiel University (CAU) and spokesman of the national collaborative research project “Memristive devices for neural systems” (FOR 2093) funded by the German Research Foundation (DFG) to track this impressive efficiency of the human brain using technology and to implement its method of operation in artificial neural networks. The scientists from Kiel have now succeeded in electronically reproducing two fundamental principles of operation of the human brain, memory and synchronisation. They recently published their results in Applied Physics Letters.

The is a master of energy efficiency. It has approximately 100 billion nerve cells, also known as neurons, which manage with power of only about 20 Watt. Modern high performance computers would require many thousands of times more energy to perform similarly complex calculations as the brain manages. The neurons in the brain are linked to each other with synapses and form a highly complex network. The term “learning” in the neurological sense means that the synaptic connections in the brain are not determined statically. Instead they are continually readjusting on the basis of environmental influences, for example sensations. This makes it possible to store new memory content locally, known as the neurological plasticity of the brain.

In addition to the spatial ability of the neural connections to adjust, there is another important building block to process information in the brain: the synchronisation of neural groups. Electrical impulses, so-called action potentials, form the basic unit of information processing in the brain. These impulses permanently transmit information between the neurons and in doing so they cross and influence the synaptic connections in the brain. “In the case of conscious sensory perceptions the spatial irregular occurrence of neural impulses changes into ordered structures suddenly and for a limited time,” says Professor Thorsten Bartsch, a neurologist at Kiel University and member of the research group. The previously independent impulses of the neurons synchronise themselves in this case even over areas of the brain that are not close together. Evidence of this synchronised “firing” in humans can also be shown by measuring brain waves (electroencephalography, EEG).

Read more

Is quantum technology the future of the 21st century? On the occasion of the 66th Lindau Nobel Laureate Meeting, this is the key question to be explored today in a panel discussion with the Nobel Laureates Serge Haroche, Gerardus ‘t Hooft, William Phillips and David Wineland. In the following interview, Professor Rainer Blatt, internationally renowned quantum physicist, recipient of numerous honours, Council Member and Scientific Co-Chairman of the 66th Lindau Meeting, talks about what we can expect from the “second quantum revolution”.

Blatt has no doubt: are driving forward a technological revolution, the future impact of which is still unclear. Nothing stands in the way of these technologies becoming the engine of innovations in science, economics and society in the . Early laboratory prototypes have shown just how vast the potential of quantum technologies is. Specific applications are expected in the fields of metrology, computing and simulations. However, substantial funding is required to advance from the development stage.

Professor Blatt, the first quantum revolution laid the physical foundations for trailblazing developments such as computer chips, lasers, magnetic resonance imaging and modern communications technology. In the Quantum Manifest published in mid-May, researchers now talk about the advent of a second quantum revolution. What exactly does this mean?

This second quantum revolution, as it is sometimes called, takes advantage of the phenomenon of entanglement. It’s a natural phenomenon that basic researchers recognized as early as the 1930s. Until now, all the technologies you mentioned derive their utility from the wave property upon which quantum physics is based. In the quantum world, its associated phenomena are often discussed in the context of wave-particle duality. Though they are not recognized as such, quantum technologies are therefore already available, and without them, many of our instruments would not be possible. By contrast, the nature of entanglement, which has been known for 85 years, has only been experimentally investigated in the past four decades based on findings by John Bell in the 1960s. Today, entanglement forms the basis for many new potential applications such as quantum communications, quantum metrology and quantum computing.

Read more

Technology can be awkward. Our pockets are weighed down with ever-larger smartphones that are a pain to pull out when we’re in a rush. And attempts to make our devices more easily accessible with smartwatches have so far fallen flat. But what if a part of your body could become your computer, with a screen on your arm and maybe even a direct link to your brain?

Artificial electronic skin (e-skin) could one day make this a possibility. Researchers are developing flexible, bendable and even stretchable electronic circuits that can be applied directly to the skin. As well as turning your skin into a touchscreen, this could also help replace feeling if you’ve suffered burns or problems with your nervous system.

The simplest version of this technology is essentially an electronic tattoo. In 2004, researchers in the US and Japan unveiled a pressure sensor circuit made from pre-stretched thinned silicon strips that could be applied to the forearm. But inorganic materials such as silicon are rigid and the skin is flexible and stretchy. So researchers are now looking to electronic circuits made from organic materials (usually special plastics or forms of carbon such as graphene that conduct electricity) as the basis of e-skin.

Read more

Retired U.S. Air Force Colonel Gene Lee, in a flight simulator, takes part in simulated air combat versus artificial intelligence technology developed by a team from industry, the U.S. Air Force, and University of Cincinnati. (credit: Lisa Ventre, University of Cincinnati Distribution A: Approved for public release; distribution unlimited. 88ABW Cleared 05/02/2016; 88ABW-2016–2270)

The U.S. Air Force got a wakeup call recently when AI software called ALPHA — running on a tiny $35 Raspberry Pi computer — repeatedly defeated retired U.S. Air Force Colonel Gene Lee, a top aerial combat instructor and Air Battle Manager, and other expert air-combat tacticians at the U.S. Air Force Research Lab (AFRL) in Dayton, Ohio. The contest was conducted in a high-fidelity air combat simulator.

According to Lee, who has considerable fighter-aircraft expertise (and has been flying in simulators against AI opponents since the early 1980s), ALPHA is “the most aggressive, responsive, dynamic and credible AI I’ve seen to date.” In fact, he was shot out of the ai r every time during protracted engagements in the simulator, he said.

Read more

Definitely could see QC being Blackberry’s achilles heal.


WATERLOO — Advances in quantum computing could present a huge challenge to BlackBerry’s biggest competitive advantage — its vaunted security software that has never been hacked.

This seldom talked-about subject was raised recently by John Thompson, the associate vice-president for research at the University of Waterloo. Thompson was listening to a presentation by Mike Wilson, a senior vice-president and chief evangelist for BlackBerry, at a medical technology conference in Kitchener about a month ago.

Both quantum computing and BlackBerry have deep roots in Waterloo. BlackBerry pioneered the smartphone industry and the wireless Internet from its suburban office parks in Waterloo.

Read more

Awesome!


What if industrial waste water could become fuel? With affordable, long-lasting catalysts, water could be split to produce hydrogen that could be used to power fuel cells or combustion engines.

By conducting complex simulations, scientists showed that adding lithium to aluminum nanoparticles results in orders-of-magnitude faster water-splitting reactions and higher hydrogen production rates compared to pure aluminum nanoparticles. The lithium allowed all the aluminum atoms to react, which increased yields (Nano Letters, “Hydrogen-on-demand using metallic alloy nanoparticles in water”).

quantum molecular dynamics simulation of the production of hydrogen molecules

A snapshot from a large quantum molecular dynamics simulation of the production of hydrogen molecules (green) from an aluminum-lithium alloy nanoparticle containing 16,661 atoms (represented by the silver contour of charge density) and dissolved charged lithium atoms (red). For clarity, the water molecules were removed from the snapshot. Simulations were carried out at the Argonne Leadership Computing Facility.

Read more

With a radio specifically designed to communicate through tissue, Professors David Blaauw (http://web.eecs.umich.edu/faculty/blaauw/) and David Wentzloff (http://web.eecs.umich.edu/~wentzlof/) from the University of Michigan’s Electrical and Computer Engineering Department (https://www.eecs.umich.edu/ece/) are adding another level to a computer platform small enough to fit inside a medical grade syringe.

With this enabling technology, real time information can be applied to devices monitoring heart fibrillation as well as glucose monitoring for diabetics.

This new radio, designed by Graduate Student Research Assistant Yao Shi, can transmit information from inside the body up to one foot to a data base receiver, more than 5 times the distance from any known radio of equal size.

ABOUT THE PROFESSORS
David Blaauw received his B.S. from Duke University in 1986 and his Ph.D. from the University of Illinois, Urbana, in 1991. From 1993 until August 2001, he worked for Motorola, Inc. in Austin, TX, where he was the manager of the High Performance Design Technology group. Since August 2001, he has been on the faculty at the University of Michigan where he is currently a full Professor. His work has focused on VLSI design with particular emphasis on adaptive and low power design.

David D. Wentzloff received the B.S.E. degree in Electrical Engineering from the University of Michigan, Ann Arbor, in 1999, and the S.M. and Ph.D. degrees from the Massachusetts Institute of Technology, Cambridge, in 2002 and 2007, respectively. Since August, 2007 he has been with the University of Michigan, Ann Arbor, where he is currently an Associate Professor of Electrical Engineering and Computer Science. His research focuses on RF integrated circuits, with an emphasis on ultra-low power design.

For more research videos, please visit the MconneX website:
http://engin.umich.edu/mconnex

Read more