Toggle light / dark theme

This truly makes QC more practical on many fronts. First, no need for QC to reside in an “icebox” room/ environment. Second, with the recent findings on making quantum computing scalable; we now have a method in place to not make QC devices over heat as well. So, again another major step forward by Sydney and their partners in Switzerland and Germany.

http://www.itwire.com/development/73884-research-breakthrough-towards-‘practical’-quantum-computing-future.html


A group of international researchers, including a leading research from the University of Sydney, has made a breakthrough discovery, making a conducting carbon material that they demonstrated could be used to perform quantum computing at room temperature, rather than near absolute zero (−273°C).

The collaboration involved a team co-led by Dr Mohammad Choucair – who recently finished a University of Sydney research fellowship in the university’s School of Chemistry – and collaborators in Switzerland and Germany.

The material produced by the researchers is simply created by burning naphthalene, the ashes form the carbon material.

Read more

Way cool! Your stitches monitors and reports your progress to your doctor/s.

BTW — In 1999, I told a guy from Diamond Intl. that the thread in our clothing would be able to do this in the next 15 to 20 years. He laughed at me; never say never.


For the first time, researchers led by Tufts University engineers have integrated nano-scale sensors, electronics and microfluidics into threads — ranging from simple cotton to sophisticated synthetics — that can be sutured through multiple layers of tissue to gather diagnostic data wirelessly in real time, according to a paper published online July 18 in Microsystems & Nanoengineering. The research suggests that the thread-based diagnostic platform could be an effective substrate for a new generation of implantable diagnostic devices and smart wearable systems.

The researchers used a variety of conductive threads that were dipped in physical and chemical sensing compounds and connected to wireless electronic circuitry to create a flexible platform that they sutured into tissue in rats as well as in vitro. The threads collected data on tissue health (e.g. pressure, stress, strain and temperature), pH and glucose levels that can be used to determine such things as how a wound is healing, whether infection is emerging, or whether the body’s chemistry is out of balance. The results were transmitted wirelessly to a cell phone and computer.

The three-dimensional platform is able to conform to complex structures such as organs, wounds or orthopedic implants.

Read more

The warning from QuintessenceLabs’ CTO John Leisoboer is stark. “When sufficiently powerful quantum computers become generally available,” he says, “it’s guaranteed to break all existing cryptographic systems that we know of.”

In other words, he adds, “Everything that we’re doing today will be broken.”

It’s a sentiment echoed by Google’s Chrome security software engineer Matt Braithwaite who wrote in a blog post earlier this month that “a hypothetical, future quantum computer would be able to retrospectively decrypt any internet communication that was recorded today”.

Read more

https://youtube.com/watch?v=jg8iCnQTLfM

A team has used simple quantum processors to run “quantum walk” algorithms, showing that even primitive quantum computers can outperform the classical variety in certain scenarios—and suggesting that the age of quantum computing may be closer than we imagined.

By now, most readers of Futurism are probably pretty well acquainted with the concept (and fantastic promise) of quantum computing.

For those who aren’t, the idea is fairly (!) simple: Quantum computers exploit three very unusual features that operate at the quantum scale—that electrons can be both particles and waves, that objects can be in many places at once, and they can maintain an instantaneous connection even when separated by vast distances (a property called “entanglement”).

Read more

https://youtube.com/watch?v=VlGADx1s1zQ

It’s not just religious terrorism that is killing people. A religious anti-science culture—which most of us live amongst—also cuts short everyone’s lives. People simply don’t care much about longevity if they believe in an afterlife.


All around the world, religious terror is striking and threatening us. Whether in France, Istanbul, London, or the USA, the threat is now constant. We can fight it all we want. We can send out our troops; we can chip refugees; we can try to monitor terrorist’s every move. We can even improve trauma medicine to deal with extreme violence they bring us. But none of this solves the underlying issue: Abrahamic religions like Christianity and Islam are fundamentally violent philosophies with violent Gods. Sam Harris, Richard Dawkins, Christopher Hitchens and others have all reiterated essentially the same thing.

Consider these verses from the Koran:

Koran (3:56): As to those who reject faith, I will punish them with terrible agony in this world and in the Hereafter, nor will they have anyone to help.

Koran (8:12): I will cast terror into the hearts of those who disbelieve. Therefore strike off their heads and strike off every fingertip of them.

Read more

By Dr. Robert Green, postdoctoral fellow, Quantum Matter Institute

In the field of quantum matter research, we seek to uncover materials with properties that may find applications in new technologies. My team and I study the properties of various materials at an atomic level to find innovative ways that they can be used to compose the next generation of computer chips. Our research results in large amounts of experimental data. One of the toughest challenges is to analyze and present the data in a meaningful way, for not only our understanding of their underlying complex, quantum principles, but also for wider audiences, including fellow researchers in the field.

One of our key research projects aims to uncover properties in materials that might be used to make smaller, more energy efficient computer chips — five to 10 years from now. In accordance with Moore’s Law, the number of transistors and overall processing power within a chip has doubled every two years for over four decades. But as chips have become more and more powerful, technological demands also continue to expand and the devices that use these chips are also becoming more portable. As a result, conventional practices of making chips are straining the laws of physics to incorporate more transistors within a shrinking area.

Read more

High-performance detectors that are compatible with mainstream semiconductor device fabrication deliver high speed, ultra-sensitivity, and good timing resolution.

Recent advances in biomedical imaging include the enhancement of image contrast, 3D sectioning capability, and compatibility with specialized imaging modes such as fluorescence lifetime imaging (FLIM).1–3 Compared with other imaging methods, FLIM offers the highest image contrast because it measures the lifetime of the fluorescence, rather than just its intensity or wavelength characteristics. The contrasting fluorescence lifetime attributes can then enable the observer to discriminate between regions, such as identifying healthy and diseased tissue for cancer detection. In conventional FLIM, a discrete single-photon detector, typically based on photomultiplier tube (PMT) technology, enables the acquisition of a single focal spot.4 This focal spot is then raster-scanned across the field of view to form an image. This approach, however, requires sequential scanning—pixel by pixel—and thus results in a slow image acquisition rate.

Read more

Transhuman Terminology.

ADHOCRACY
AEONOMICS
A-LIFE
AGORIC SYSTEM

AI-COMPLETE ALEPH ALGERNON AMORTALIST ARACHNIOGRAPHY ARCH-ANARCHY ARCOLOGY ARROW IMPOSSIBILITY THEOREM ARTILECT ASEX ASIMORT ASIMOV ASSEMBLER ATHANASIA ATHANOPHY ATHEOSIS AUGMENT AUTOEVOLUTIONIST AUTOMATED ENGINEERING AUTOMORPHISM AUTOPOTENT AUTOSCIENT BABY UNIVERSE BASEMENT UNIVERSE BEAN DIP CATASTROPHE BEANSTALK BEKENSTEIN BOUND BERSERKER BETELGEUSE-BRAIN BIG CRUNCH BINERATOR BIOCHAUVINISM BIOLOGICAL FUNDAMENTALISM BIONICS BIONOMICS BIOPHILIAC BIOSTASIS B-LIFE BLIGHT BLIND UPLOADING BLUE GOO BOGOSITY FILTER BORGANISM BREAKEVEN POINT BROADCATCHING BRUTE FORCE UPLOADING BUSH ROBOT CALCUTTA SYNDROME CALM TECHNOLOGY CALORIE RESTRICTION CASIMIR EFFECT CEREBROSTHESIS CHINESE ROOM CHRONONAUTS CHURCH-TURING THESIS COBOTS COMPUFORM COMPUTRONIUM CONCENTRATED INTELLIGENCE CONSILIENCE CONNECTIONISM CONTELLIGENCE CONTINUITY IDENTITY THEORY COSMYTHOLOGY CRYOBIOLOGY CRYOCRASTINATE CRYOGENICS CRYONICS CRYONIC SUSPENSION CRYPTO ANARCHY CRYPTOCOSMOLOGY CYBERCIDE CYBERFICTION CYBERGNOSTICISM CYBERIAN CYBERNATE/CYBERNIZE CYBERSPACE/CYBERMATRIX CYBRARIAN CYPHERPUNK DEANIMALIZE DEATH FORWARD DEATHISM DEEP ANARCHY DEFLESH DIGITAL PSEUDONYM DIAMONDOID DISASSEMBLER DISASTERBATION DISTRIBUTED INTELLIGENCE DIVERGENT TRACK HYPOTHESIS DIVERSITY IQ DIVIDUALS DOOMSDAY ARGUMENT DOWNLOAD DRYWARE DUBIFIER DYSON SPHERE ECOCALYPSE ECTOGENESIS

EMBRYOMEME
EMULATION
ENHANCED REALITY
ENVIROCAPITALISM
EPHEMERALISTS
E-PRIME
ESCALATORLOGY
THE ETERNAL LIFE POSTULATE
EUPSYCHIA
EUTHENICS
EVOLUTIONARILY STABLE STRATEGY (ESS)
EVOLUTURE
EXCONOMICS
EXES
EXFORMATION
EXISTENTIAL TECHNOLOGY
EXOPHOBIA
EXOSELF
EXTROPIAN
EXTROPIATE
EXTROPIC
EXTROPOLIS
EXTROPY
FACULTATIVE ANAGOROBE
FAR EDGE PARTY
THE FERMI PARADOX
FEMTOTECHNOLOGY
FLATLANDER
FLUIDENTITY
FOGLET
FORK
FREDKIN’S PARADOX
FUNCTIONAL SOUP
FUTIQUE
FUTURE SHOCK
GALAXY BRAIN
GAUSSIAN
GENEGENEERING
GENETIC ALGORITHM
GENIE
GREEN GOO
GÖDEL’S THEOREM
GOLDEN GOO
GREAT FILTER, THE
GREY GOO
GUY FAWKES SCENARIO
HALLUCINOMEMIC
HIVE COMPUTING
HOMORPH
HPLD
HYPERTEXT
HYPONEIRIA
HYPOTECH

IDEAL IDENTITY
IMMORTALIST
IMMORTECHNICS
IMP
INACTIVATE
INFOGLUT
INFOMORPH
INFORMATION-THEORETICAL DEATH
INLINE UNIVERSITIES
INTERFACER
INTERNALNET
JUPITER-BRAIN
KHAKI GOO
KARDASCHEV TYPES
KNOWBOTS
KOLMOGOROV COMPELXITY
LEONARDO DA VINCI SYNDROME
LINDE SCENARIO
LIQUIDENTITY
LOFSTROM LOOP
LONGEVIST
MASPAR
MATAGLAP
MEGATECHNOLOGY (or MEGASCALE ENGINEERING)
MEMETICS
MEMIE
MEMIUS
MEMOTYPE
MEMOID (or MEMEOID)
MEHUM
MERCHANCY
MESOSCALE
MINDKIND
MOLMAC
MORPHOLOGICAL FREEDOM
MUTUAL REALITY
NANARCHIST
NANARCHY
NANITE
NANOCHONDRIA
NANOFACTURE
NANOMEDICINE
NANOSOME
NANOTECH
(MOLECULAR) NANOTECHNOLOGY
NEG
NEOMORPH
NEOLOGOMANIA
NEOPHILE
NEOPHILIA
NEOPHOBE
NEUROCOMPUTATION
NEURONAUT
NEURON STAR
NEUROPROSTHESIS
NEUROSUSPENSION
NOOTROPIC
NOW SHOCK
NUTRACEUTICAL
OFFLOADING
OMEGA POINT
OMEGON
OMNESCIENCE
O’NEILL COLONY
O’NEILL CYLINDERS
ONTOLOGICAL CONSERVATIVES
OPTIMAL PERSONA
PANCRITICAL RATIONALISM
ORBITAL TOWER
PARTIALATE
PATTERN IDENTITY THEORY
PERICOMPUTER
PERIMELASMA
PERSOGATE
PERVERSION ATTACK
PHARMING
PHYLE
PHYSICAL ESCHATOLOGY
PICO TECHNOLOGY
PIDGIN BRAIN
PINK GOO
PLEXURE
POME
POSTHUMAN
POSTJUDICE
POWERSHIFT
PRISONERS’ DILEMMA
PRIVACY MANAGEMENT
PROLONGEVITY
QUANTUM COMPUTING
QUANTUM CRYPTOGRAPHY
QUASISPECIES
RAPTURE OF THE FUTURE
RED GOO
RED QUEEN PRINCIPLE
RED QUEENED
REMEMBRANCE AGENT
REVERSIBLE
RIF
SANS CEILING HYPOTHESIS
SANTA MACHINE
SAPPER MEME
SCHEME
SENTIENCE QUOTIENT
SHIH
SINGULARITY
SINGULARITARIAN
SKY HOOK
SMART-FACED
SOCIOTYPE
SOLID STATE CIVILIZATION
SPIKE, THE
SPOCK MEME
SPONTANEOUS VOLUNTARISM
SPACE FOUNTAIN
STAR LIFTING
STELLAR HUSBANDRY
STEWARD
STRONG AI POSTULATE
STRONG CONVERGENCE HYPOTHESIS
SUSPENDED ANIMATION
SYNTHESPIAN
TAZ/Temporary Autonomous Zone.
TECHNOCYTE
TECHNOSPHERE
TECHNOCALYPS
TELEOLOGICAL THREAD
THEORETICAL APPLIED SCIENCE
TITHONUS SYNDROME
TIPLER CYLINDER
TIPLERITE
TRANSBIOMORPHOSIS (TRANSBIOLOGICAL METAMORPHOSIS)
TRANSCEND
TRANSCENSION
TRANSCIENT
TRANSCLUSION
TRANSHUMANISM
TRANSHUMANITIES
TRAPDOOR FUNCTION
TURING MACHINE
TURING TEST
ÜBERGOO
UBIQUITOUS COMPUTING
UPLIFT
UPLOADER
UNIVERSAL CONSTRUCTOR
UNIVERSAL IMMORTALISM
UNIVERSAL TURING MACHINE
UTILITY FOG
VACCIME
VASTEN
VENTURISM
VIEWQUAKE
VIRIAN
VIRION
VIRTUAL COMMUNITY
VIRTUAL RIGHTS
VITOLOGY
VIVISYSTEM
VON NEUMANN MACHINE
VON NEUMANN PROBE
WEBORIZE
WETWARE
WORMHOLE
XENOBIOLOGY
XENOEVOLUTURE
XEROPHILIA
XOXER
ZERO KNOWLEDGE PROOF


This may not be the best possible neologism for this sort of entity, but I think it’s a good idea on principle to generate neologisms. They are good for us and solidify our thinking. Bruce Sterling, Speech at Lifelike Computer Characters ‘95.

Read more

Researchers have developed a computer algorithm that doesn’t solve problems but instead creates them for the purpose of evaluating quantum computers.

The desire for quantum computers stems from their potential to solve certain hard problems faster than classical computers. But those bragging rights haven’t actually been earned yet, as no experiment has shown this presumed speedup. Researchers from the University of Southern California, Los Angeles, and the Complutense University of Madrid, Spain, have devised an algorithm that generates extra hard problems that could offer quantum computers the chance to prove their worth.

The problems that the team focused on belong to the general class of optimization problems. The main example is the Ising model, which describes the interaction of a large number of spins within a lattice. The goal is to find the ground state, which is the orientation of spins that minimizes the interaction energy. The problem is computationally hard because there are many local minima (pseudo-ground-states) that can fool a search algorithm.

Read more