Toggle light / dark theme

Summary: Brain-to-text system could help people with speech difficulties to communicate, researchers report.

Source: Frontiers.

Recent research shows brain-to-text device capable of decoding speech from brain signals.

Ever wonder what it would be like if a device could decode your thoughts into actual speech or written words? While this might enhance the capabilities of already existing speech interfaces with devices, it could be a potential game-changer for those with speech pathologies, and even more so for “locked-in” patients who lack any speech or motor function.

Read more

Nice.


Scientists have created an inexpensive technique to print “data skin” — soft wearable electronics — paving way for smart tattoos that can be customised and printed at home.

Researchers created a fully functional “data skin” in under an hour. Since the method is based on inexpensive processing tools and materials, the circuits can be produced for less than a dollar.

When wrapped around the fingertip, a “data skin” embedded with an optical pulse oximetry chip can measure heart rate and blood oxygenation, or can bond to the back of the hand to monitor hand gestures.

Read more

What does the future hold for computing? Experts at the Networked Quantum Information Technologies Hub (NQIT), based at Oxford University, believe our next great technological leap lies in the development of quantum computing.

Quantum computers could solve problems it takes a conventional computer longer than the lifetime of the universe to solve. This could bring new possibilities, such as advanced drug development, superior military intelligence, greater opportunities for and enhanced encryption security.

Quantum computers also present real risks, but scientists are already working on new forms of encryption that even a quantum computer couldn’t crack. Experience tells us that we should think about the applications and implications of quantum computing long before they become reality as we strive to ensure a safe future in the exciting new age of .

Read more

Using ultrafast laser flashes, physicists from the Max Planck Institute have generated the fastest electric current that has ever been measured inside a solid material.

In the field of electronics, the principle ‘the smaller, the better’ applies. Some building blocks of computers or mobile phones, however, have become nearly as small today as only a few atoms. It is therefore hardly possible to reduce them any further.

Another factor for the performance of electronic devices is the speed at which electric currents oscillate. Scientists at the Max Planck Institute of Quantum Optics have now created electric currents inside solids which exceed the frequency of visible light by more than ten times They made electrons in silicon dioxide oscillate with ultrafast laser pulses. The conductivity of the material which is typically used as an insulator was increased by more than 19 orders of magnitude.

Read more

A nice read on the who’s who in QC: congrats Vern Brownell and Michelle S. in making the top 13 list.


Leaders in quantum computing discuss the challenges and potential for this technology across finance, AI, and many other fields.

Read more

What happens when you knock the carbon out of diamonds? You end up maintaining 100 percent quantum integrity; therefore, you can now transmit multitude of Qubits together over a long distance instead of 1 Qubit in one transmission and among multiple QC Devices.


New breakthrough paves the way for the first practical quantum computers

Quantum computers are a reality but unlike the first traditional computers, which were large enough to fill a room, most of today’s quantum computers are very small with one, five, or even 16 qubits at their core and getting to the point where we have a truly practical quantum computer is going to require component by component advances until, one day, we get to the point where all of the blocks “just work”.

Researchers from Harvard University and Sandia Ion Beam Laboratory have just managed to make such an advance – by figuring out a way to link multiple quantum systems together within one piece of material.

Read more

New magnetoelectric multiferroic material operates at 100 times lower power (credit: Julia A. Mundy/Nature)

Lawrence Berkeley National Laboratory scientists have developed a new “magnetoelectric multiferroic*” material that could lead to a new generation of computing devices with more computing power while consuming a fraction of the energy that today’s electronics require.

Read more

(credit: iStock)

An artificial intelligence method developed by University College London computer scientists and associates has predicted the judicial decisions of the European Court of Human Rights (ECtHR) with 79% accuracy, according to a paper published today (Monday, Oct. 24) in PeerJ Computer Science.

The method is the first to predict the outcomes of a major international court by automatically analyzing case text using a machine-learning algorithm.*.

Read more

Wall Street watchdogs turn to AI: System can scan markets and even chat rooms for rogue traders…


Artificial intelligence programs have beaten chess masters and TV quiz show champions. Next up: stock market cheats.

Two exchange operators have announced plans to launch artificial intelligence tools for market surveillance in the coming months and officials at a Wall Street regulator tell Reuters they are not far behind.

Executives are hoping computers with humanoid wit can help mere mortals catch misbehavior more quickly.

Read more

Get ready to dump the keyboard: Experts claim mind controlled computers are just a decade away…


An expert at West Virginia University suggests human thought will soon communicate directly with computers, which will move us toward an era of ‘computing at the speed of thought.’

Read more