Toggle light / dark theme

Oh; there is a LOT more to they syndiamond story as it relates to some of the additional hardware and communications technologies that we’re developing and planning for the future.


What are the unique properties of diamond that make it a supermaterial?

Diamond has long been known to have exceptional properties, largely resulting from the symmetry of the cubic lattice made of light carbon atoms connected by extremely strong bonds. These exceptional properties include thermal conductivity five times higher than that of copper and the widest optical transparency of any material extending from the UV to the RF part of the electromagnetic spectrum. Additionally, diamond also has some interesting chemical properties as it is extremely inert, though it can become a conductor by adding boron. In this manner, one could leverage synthetic diamond for use in electrochemical incineration where existing electrode materials have only a limited lifetime.

What are the traditional applications for synthetic diamond in engineering and electronics?

Historically diamond has been exploited mainly for its great hardness in mechanical applications. For example in modern cars more than 150 components are made using a variety of diamond tools. However in the past two decades there have been an increasing number of applications which utilize some of diamonds’ other superlative properties. For example, synthetic diamond is utilized in semiconductor applications for its heat spreading abilities. This trend is being driven by the increasing number of transistors on a chip which increases the thermal load and therefore runs the risk of device failure. Using diamond in this application not only means more transistors can run on a chip but it also extends device lifetime as they can run cooler. Synthetic diamond is also being used as a radiation detector. Element Six diamond is currently being used in the CERN Large Hadron Collider as part of its monitoring system.

Read more

Nice.


Using their advanced atomic clock to mimic other desirable quantum systems, JILA physicists have caused atoms in a gas to behave as if they possess unusual magnetic properties long sought in harder-to-study solid materials. Representing a novel “off-label” use for atomic clocks, the research could lead to the creation of new materials for applications such as “spintronic” devices and quantum computers.

JILA’s record-setting atomic clock, in which strontium atoms are trapped in a laser grid known as an , turns out to be an excellent model for the magnetic behavior of crystalline solids at the atomic scale. Such models are valuable for studying the counterintuitive rules of quantum mechanics.

To create “synthetic” magnetic fields, the JILA team locked together two properties of the clock atoms to create a quantum phenomenon known as spin-orbit coupling. The long lifetime and precision control of the clock atoms enabled researchers to overcome a common problem in other gas-based spin-orbit coupling experiments, namely heating and loss of atoms due to spontaneous changes in atomic states, which interferes with the effects researchers are trying to achieve.

Read more

Doesn’t pay to fraud the government. The real question is why it took so long (4 years).


Defendant submitted false data and information instead of building and testing experimental components

OAKLAND – S. Darin Kinion, Ph.D., was sentenced today to 18 months’ imprisonment for submitting false data and reports to defraud the United States in connection with a quantum computing research program announced United States Attorney Brian J. Stretch, U.S. Department of Energy Special Agent in Charge of the Office of the Inspector General Scott Berenberg, and Inspector General of the Intelligence Community I. Charles McCullough III. The sentence follows a guilty plea entered June 14, 2016, in which Kinion acknowledged submitting false data and reports to the Intelligence Advanced Research Projects Activity (“IARPA”) of the Office of the Director of National Intelligence in a scheme to defraud the government out of money intended to fund research.

According to his plea agreement, Kinion, 44, of Lafayette, Calif., admitted that between 2008 and 2012, he received millions of dollars of funding from IARPA to design, build, and test experimental components in the field of quantum computing at the Lawrence Livermore National Laboratory (“LLNL”). Nevertheless, rather than build and test the experimental components, Kinion presented to the government false and fraudulent data and information in a scheme to defraud IARPA into thinking he had performed the work. In order to build and test the experimental components, Kinion would have had to set up and operate certain equipment. Kinion requested funds from IARPA to purchase the equipment, claimed he had used the equipment successfully to build and test experimental components, and submitted reports and information in support of these claims. Kinion, however, never setup nor operated the equipment.

Read more

Many more great things are coming.


NIST called on cryptography researchers to submit their quantum-proof encryption algorithms by November 30. NIST is the latest government agency to start taking the threat of quantum computers seriously.

Read more

In light of the recent attacks in Europe, the search for terrorists, and the ongoing refugee/immigration issues, I still support considering this idea of implants. In fact, so long as the Middle East is in strife, and large amounts of refugees are created, and fundamental religiosity thrives, I’m certain some type of tracking technology implementation in the developed world is inevitable over the next 2–15 years for refugees and some immigrants. Such technology broadly remains the humanitarian thing to do (read the article!), while still protecting the public and national interests.

https://www.cnet.com/news/presidential-candidate-suggests-microchips-for-syrian-refugees/ #transhumanism #Germany #terrorism #immigration


The question of allowing Syrian refugees in to the United States has created a political firestorm in the wake of the terrorist attacks in Paris and one Presidential candidate proposes a novel, high-tech solution, but it’s also likely to make plenty of Americans uncomfortable.

Transhumanist Party candidate Zoltan Istvan suggests that small microchips could be implanted under the skin of Syrian refugees as part of the process of admitting them into the United States or other countries around the world.

“The procedure takes a minute and is harmless,” Istvan, who recently had a microchip implanted in his own hand to kick off his campaign bus tour, told CNET in an email. “The chip is the size of a grain of rice and could go in the hand and be useful for more than just tracking purposes.”

In an earlier interview with the Broward-Palm Beach New Times, Istvan said chipping refugees could be one way to track them and determine if any might be plotting acts of violence and also monitor who is “contributing to the system — whether they are working, paying taxes or causing strife.”

Read more

Stanford University’s amazing new regenerative medicine facility where the impossible is becoming possible.


The 25,000-square-foot facility, which opened last September, puts Stanford at the forefront of one of medicine’s most important and promising trends: regenerative medicine, which aims to refurbish diseased or damaged tissue using the body’s own healthy cells.

“We’re curing the incurable,” said laboratory director David DiGiusto, who holds a doctorate.

Critics complain that no one makes anything in Silicon Valley anymore except mobile apps and plug-in cars, a decades-long gripe that dates back to the shuttering of chip fabrication plants.

Read more

In Brief As technology improves, the possibility that our world may be a simulated one is becoming more and more probable, argues Universe Today founder Fraser Cain. But can we ever prove that we live in a simulation of a reality?

All the world’s a stage. Or is it a simulation?

The idea that what we consider reality is actually a simulation was first proposed by scientist Nick Bostrom, and it is frequently addressed in fiction (e.g., “The Matrix” trilogy) and by innovators and educators such as Elon Musk, who brought up the topic at the 2016 Code Conference.

Read more