Toggle light / dark theme

A weakness of lasers integrated onto microchips is how they can each generate only one color of light at a time. Now researchers have come up with a simple integrated way to help these lasers fire multiple colors, a new study finds.

When it comes to data and telecommunications applications, integrated lasers would ideally generate multiple frequencies of light to boost how much information they could transmit. One way to achieve this end is an “optical frequency comb,” which converts a pulse of light from a single laser into a series of pulses equally spaced in time and made up of different, equally spaced frequencies of light.

Generating combs long required equipment that was expensive, bulky, complex, and delicate. However, in the past decade or so, researchers began developing miniature and integrated comb systems. These microcombs passed light from a laser through a waveguide to a microresonator—a ring in which circulating light could become a soliton, a kind of wave that preserves its shape as it travels. When solitons left these microresonators, they each did so as very stable, regular streams of pulses—in other words, as frequency combs.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current technologies are based on ferromagnets, whose states can be flipped readily by magnetic fields. Faster, denser, and more robust next-generation devices would be made possible by using a different class of materials, known as antiferromagnets. Their magnetic state, however, is notoriously difficult to control.

Now, a research team from the MPSD and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency . Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

The strength and direction of a magnet’s ‘north pole’ is denoted by its so-called magnetization. In ferromagnets, this easily reversible magnetization can represent a ‘bit’ of information, which has made them the materials of choice for magnet-based technologies. But ferromagnets are slow to operate and react to stray magnetic fields, which means they are prone to errors and cannot be packed very closely together.

Trapped Rydberg ions can be the next step towards scaling up quantum computers to sizes where they can be practically usable, a new study in Nature shows.

Different physical systems can be used to make a quantum computer. Trapped ions that form a crystal have led the research field for years, but when the system is scaled up to large ion crystals this method gets very slow. Complex arithmetic operations cannot be performed fast enough before the stored quantum information decays.

A Stockholm University research group may have solved this problem by using giant Rydberg ions, 100 million times larger than normal atoms or ions. These huge ions are highly interactive and, therefore, can exchange quantum information in less than a microsecond.

Honeywell has been working toward this goal for the past decade when it began developing the technology to produce cryogenics and laser tools. In the past five years, the company assembled a team of more than 100 technologists entirely dedicated to building the machine, and in March, Honeywell announced it would be within three months — a goal it was able to meet even as the Covid-19 turned its workforce upside down and forced some employees to work remotely. “We had to completely redesign how we work in the facilities, had to limit who was coming on the site, and put in place physical barriers,” says Tony Uttley, president of Honeywell Quantum Solutions. “All of that happened at the same time we were planning on being on this race.”


The conglomerate said its machine had reached a Quantum Volume of 64, twice as powerful as IBM’s machine.

Industrial powerhouse Honeywell says its latest quantum computer is now the fastest in the world. How quickly real-world applications will develop or how swiftly they’ll be able to impact industries or affect cryptographic systems such as Bitcoin is the subject of rigorous debate.

In an announcement on Thursday, Honeywell says its team of scientists, engineers and technicians has delivered a quantum volume of 64. The metric measures both the total number of the computer’s qubits and how well it handles them. IBM’s machine scored a 32, suggesting Honeywell’s quantum computer is twice as fast.

Honeywell’s machine is designed to add up to 640,000 quantum bits (qubits) as the system scales. Tony Uttley, president of Honeywell’s quantum computing division, tells CNET.

Honeywell stock doesn’t trade on quantum fundamentals yet. Shares are down about 16% year to date, worse than the comparable drops of the S&P 500 and Dow Jones Industrial Average. Honeywell is a large aerospace supplier, and the commercial aviation business has been hammered by Covid-19. Boeing (BA) stock, for instance, is off more than 40% year to date.

Honeywell stock is flat in early Friday trading. The S&P is up about 0.8%.

The quantum-computing industry hasn’t yet arrived, despite today’s announcement. But quantum computers are already better than regular computers in certain instances. Google parent Alphabet (GOOGL) demonstrated the ability of its rudimentary quantum computer to beat traditional systems.

Computers are renowned for flexibility, running everything from game consoles to stock exchanges. But at the level of computation, most computers rely on arrays of identical processors called cores. Now, a team at Princeton University has built a hardware platform that allows different kinds of computer cores to fit together, allowing designers to customize systems in new ways.

The goal is to create new systems that parcel out tasks among specialized cores, increasing efficiency and speed.

On top of multi– collaboration, even more gains are achievable when cores needn’t all rely on the same basic programming code that tells a core how to handle its processing jobs. Designers call this basic code an Instruction Set Architecture (ISA). Well-established ISAs include Intel x86, commonly found in laptops, ARM in smartphones, and POWER in IBM mainframes. Besides mixing together cores specialized for different ISAs, researchers are also interested in developing hybrid ISAs to underpin new processor designs, exploiting the potential of new, cutting-edge, open-source ISAs like RISC-V ISA.

“Beam me up” is one of the most famous catchphrases from the Star Trek series. It is the command issued when a character wishes to teleport from a remote location back to the Starship Enterprise.

While human teleportation exists only in , teleportation is possible in the subatomic world of quantum mechanics—albeit not in the way typically depicted on TV. In the , teleportation involves the transportation of information, rather than the transportation of matter.

Last year scientists confirmed that information could be passed between photons on even when the photons were not physically linked.