Summary: A new AI system helps researchers better understand the brain computations that underlie thought.
Source: Baylor University.
A team led by researchers at Baylor College of Medicine and Rice University has developed artificial intelligence (AI) models that help them better understand the brain computations that underlie thoughts. This is new, because until now there has been no method to measure thoughts. The researchers first developed a new model that can estimate thoughts by evaluating behavior, and then tested their model on a trained artificial brain where they found neural activity associated with those estimates of thoughts. The theoretical study appears in the Proceedings of the National Academy of Sciences.
Global #connectivity lets for #digitalidentity for billions of people worldwide, giving them access to #telehealth, #education, #careers, #entertainment and #finance services, as well as raising #cybersecurity and #dataprivacy concernsRe-sharing. Starlink can help telemedicine become more reliable and available to people in need. Especially those in rurual or far flung locations.
One interesting sub-division of SpaceX is Starlink, which is Musk’s venture into increasing global connectivity. Starlink’s mission is to use a global network of low Earth orbit satellites to eventually “deliver high speed broadband internet to locations where access has been unreliable, expensive, or completely unavailable.” While satellite internet itself is not a novel concept, most of the traditional systems use dated technology that have far less capabilities with regards to internet speed, connectivity, and sustainability. Starlink’s goal is to provide high-speedbroadband internet, using cutting-edge satellite systems that will also not add to the space pollution created by traditional systems. As of now, the company states that it “is targeting service in the Northern U.S. and Canada in 2020, rapidly expanding to near global coverage of the populated world by 2021.”
Scientists have developed a new type of banana that could help the many children in Uganda who have a pro-vitamin A deficiency.
The so-called “golden bananas”, named for their appearance, were developed by a team from the Queensland University of Technology in Australia, led by Professor James Dale. The findings have been published in the Plant Biotechnology Journal.
It’s hoped that by 2021, Ugandan farmers will be growing bananas rich in pro-vitamin A. About $10 million was supplied by the Bill & Melinda Gates Foundation for the research.
On January 16th, 2001, the Columbia space shuttle launched for the 27th and last time on a mission to perform various experiments, including investigating the effects of microgravity on the human body.
While routine for many illnesses, experts say two- or three-dose vaccines are unprecedented in a pandemic when 60 to 70 percent of the population must be immunized to stop the virus’s spread.
With fall and winter holidays coming up, many will be pondering the relationship between food and sleep. Researchers led by Professor Masashi Yanagisawa at the University of Tsukuba in Japan hope they can focus people on the important middlemen in the equation: bacterial microbes in the gut. Their detailed study in mice revealed the extent to which bacteria can change the environment and contents of the intestines, which ultimately impacts behaviors like sleep.
The experiment itself was fairly simple. The researchers gave a group of mice a powerful cocktail of antibiotics for four weeks, which depleted them of intestinal microorganisms. Then, they compared intestinal contents between these mice and control mice who had the same diet. Digestion breaks food down into bits and pieces called metabolites. The research team found significant differences between metabolites in the microbiota-depleted mice and the control mice. As Professor Yanagisawa explains, “we found more than 200 metabolite differences between mouse groups. About 60 normal metabolites were missing in the microbiota-depleted mice, and the others differed in the amount, some more and some less than in the control mice.”
The team next set out to determine what these metabolites normally do. Using metabolome set enrichment analysis, they found that the biological pathways most affected by the antibiotic treatment were those involved in making neurotransmitters, the molecules that cells in the brain use to communicate with each other. For example, the tryptophan–serotonin pathway was almost totally shut down; the microbiota-depleted mice had more tryptophan than controls, but almost zero serotonin. This shows that without important gut microbes, the mice could not make any serotonin from the tryptophan they were eating. The team also found that the mice were deficient in vitamin B6 metabolites, which accelerate production of the neurotransmitters serotonin and dopamine.
A material that mimics human skin in strength, stretchability and sensitivity could be used to collect biological data in real time. Electronic skin, or e-skin, may play an important role in next-generation prosthetics, personalized medicine, soft robotics and artificial intelligence.
“The ideal e-skin will mimic the many natural functions of human skin, such as sensing temperature and touch, accurately and in real time,” says KAUST postdoc Yichen Cai. However, making suitably flexible electronics that can perform such delicate tasks while also enduring the bumps and scrapes of everyday life is challenging, and each material involved must be carefully engineered.
Most e-skins are made by layering an active nanomaterial (the sensor) on a stretchy surface that attaches to human skin. However, the connection between these layers is often too weak, which reduces the durability and sensitivity of the material; alternatively, if it is too strong, flexibility becomes limited, making it more likely to crack and break the circuit.
Original Video ► https://www.youtube.com/watch?v=W_23474cHLg&ab_channel=RT
This channel will never be monetized. Paypal ► https://goo.gl/ciSpg1
They say age breeds wisdom. But can we grow personally and mature, while staying young and healthy? Can ageing be cured just like any other disease? We asked David Sinclair, professor of genetics at Harvard Medical School.
David Andrew Sinclair is an Australian biologist and Professor of Genetics best known for his research on the biology of lifespan extension and driving research towards treating diseases of aging.
Sinclair is Co-Director of the Paul F. Glenn Laboratories for the Biological Mechanisms of Aging at Harvard Medical School. Sinclair obtained a Bachelors of Science (Honours Class I) at the University of New South Wales, Sydney, and received the Australian Commonwealth Prize. In 1995, he received a Ph.D. in Molecular Genetics then worked as a postdoctoral researcher at the Massachusetts Institute of Technology with Leonard Guarente. Since 1999 he has been a tenured professor in the Genetics Department of Harvard Medical School.
Sinclair has received over 25 awards including The Australian Commonwealth Prize, A Helen Hay Whitney Fellowship, the Nathan Shock Award, a Leukemia and Lymphoma Fellow, a MERIT Awards from the National Institutes of Health, the Merck Prize, the Arminese Fellowship, the Genzyme Outstanding Achievement in Biomedical Science Award, an Ellison Medical Senior Fellow, the Bio-Innovator award, the Bright Sparks Award for Top Scientists under 40, The Denham Harman Award in Biogerontology, a medal from the Australian Society for Medical Research, and a TIME 100 honoree, TIME magazine’s list of the 100 “most influential people in the world” (2014).
They can check you in and deliver orange juice to your hotel room, answer your questions about a missing package, whip up sushi and pack up thousands of subscription boxes. And, perhaps most importantly, they are completely immune to Covid-19. While people have had a hard time in the coronavirus pandemic, robots are having a moment.
The Covid-19 pandemic has left millions of Americans unemployed – disproportionately those in the service industries where women and people of color make up the largest share of the labor force. In October, 11 million people were unemployed in the US, compared with about 6 million people who were without a job during the same time last year.