Toggle light / dark theme

Scientists from the Institute of Scientific and Industrial Research at Osaka University have used machine-learning methods to enhance the signal-to-noise ratio in data collected when tiny spheres are passed through microscopic nanopores cut into silicon substrates. This work may lead to much more sensitive data collection when sequencing DNA or detecting small concentrations of pathogens.

Miniaturization has opened the possibility for a wide range of diagnostic tools, such as point-of-care detection of diseases, to be performed quickly and with very small samples. For example, unknown particles can be analyzed by passing them through nanopores and recording tiny changes in the . However, the intensity of these signals can be very low, and is often buried under random noise. New techniques for extracting the useful information are clearly needed.

Now, scientists from Osaka University have used to “denoise” nanopore data. Most machine learning methods need to be trained with many “clean” examples before they can interpret noisy datasets. However, using a technique called Noise2Noise, which was originally developed for enhancing images, the team was able to improve resolution of noisy runs even though no clean data was available. Deep neural networks, which act like layered neurons in the brain, were utilized to reduce the interference in the data.

Harnessing the Hum of Fluorescent Lights for More Efficient Computing

The property that makes fluorescent lights buzz could power a new generation of more efficient computing devices that store data with magnetic fields, rather than electricity.

A team led by University of Michigan researchers has developed a material that’s at least twice as “magnetostrictive” and far less costly than other materials in its class. In addition to computing, it could also lead to better magnetic sensors for medical and security devices.

Scientists used to perform experiments by stirring biological and chemical agents into test tubes.

Nowadays, they automate research by using the size of postage stamps. In these tiny devices, millions of microscopic particles are captured in droplets of water, each droplet serving as the “test tube” for a single experiment. The chip funnels these many droplets, one at a time, through a tiny channel where a laser probes each passing droplet to record thousands of experimental results each second.

These chips are used for such things as testing new antibiotics, screening drug compounds, sequencing the DNA and RNA of single cells, and otherwise speeding up the pace of scientific discovery.

While the mitochondrion has long fascinated biologists and the sheer diversity of druggable targets has made it attractive for potential drug development, there has been little success translatable to the clinic. Given the diversity of inborn errors of metabolism and mitochondrial diseases, mitochondrially mediated oxidative stress (myopathies, reperfusion injury, Parkinson’s disease, ageing) and the consequences of disturbed energetics (circulatory shock, diabetes, cancer), the potential for meaningful gain with novel drugs targeting mitochondrial mechanisms is huge both in terms of patient quality of life and health care costs. In this themed issue of the British Journal of Pharmacology, we highlight the key directions of the contemporary advances in the field of mitochondrial biology, emerging drug targets and new molecules which are close to clinical application. Authors’ contributions are diverse both in terms of species and organs in which the mitochondrially related studies are performed, and from the perspectives of mechanisms under study. Defined roles of mitochondria in disease are updated and previously unknown contributions to disease are described in terms of the interface between basic science and pathological relevance.

Can We Immunize The World Against Future Pandemics? Dr Jonna Mazet, DVM, MPVM, PhD, UC Davis School of Veterinary Medicine — Global Virome Project.


Dr. Jonna Mazet, DVM, MPVM, PhD, is a Professor of Epidemiology and Disease Ecology at the UC Davis School of Veterinary Medicine, Founding Executive Director of the UC Davis One Health Institute, and Vice Provost For Grand Challenges At UC Davis.

Additionally, Dr. Mazet in on the Steering Committee of the Global Virome Project, Principal Investigator of the PREDICT project, Chair, National Academies’ One Health Action Collaborative, and Co-Vice Chair, UC Global Health Institute Board of Directors.

Dr. Mazet’s work focuses on global health problem solving for emerging infectious diseases and conservation challenges. She is active in international One Health education, service, and research programs, most notably in relation to pathogen emergence; disease transmission among wildlife, domestic animals, and people; and the ecological drivers of novel disease dynamics.

Currently, Dr. Mazet is the Co-Director of the US Agency for International Development’s One Health Workforce – Next Generation, an $85 million educational strengthening project to empower professionals in Central/East Africa and Southeast Asia to address complex and emerging health threats, including antimicrobial resistance and zoonotic diseases.

Dr. Mazet is the Principal Investigator of, and served as the Global Director of, the PREDICT Project for 10 years, a greater than $200 million viral emergence early warning project under USAID’s Emerging Pandemic Threats Division, which served as an early-warning system-strengthening effort aimed at finding emerging viruses before they spread to humans.

Dr. Mazet was elected to the US National Academy of Medicine in 2013 in recognition of her successful and innovative approach to emerging environmental and global health threats, and serves on the National Academies of Science, Engineering, and Medicine’s Forum on Microbial Threats and chairs the Academies’ One Health Action Collaborative. She was appointed to the National Academies Standing Committee on Emerging Infectious Diseases and 21st Century Health Threats, which was created to assist the federal government with critical science and policy issues related to the COVID-19 crisis and other emerging health threats.

Getting older is a fact of life. As we age, we can grow bigger, smarter and stronger. But at a certain point, our bodies often start to slow down. The idea behind why we age and why our bodies slow down is that we start to lose the ability to make enough energy to support all the different functions that our body carries out.

Hazel H. Szeto, MD, PhD, is a medical doctor and a research scientist. She may have found the answer to reversing the aging process by restoring a person’s ability to make energy. Szeto presented her work last month at Experimental Biology 2021.

To better understand Szeto’s discovery, we must first understand how the body makes energy. We produce energy in the form of a small molecule called adenosine triphosphate, or ATP. When ATP is broken down, it releases energy that allows our bodies to do work, such as contracting the muscles in our arms and legs so we can lift a box. Mitochondria are small structures in the cells that make ATP from the food we eat.

The UK’s decision to delay second doses of coronavirus vaccines has received fresh support from research on the over-80s which found that giving the Pfizer/BioNTech booster after 12 weeks rather than three produced a much stronger antibody response.

A study led by the University of Birmingham in collaboration with Public Health England found that antibodies against the virus were three-and-a-half times higher in those who had the second shot after 12 weeks compared with those who had it after a three-week interval.

Fully vaccinated people don’t need to wear a mask or physically distance during outdoor or indoor activities, large or small, federal health officials said, the fullest easing of pandemic recommendations so far.

The fully vaccinated should continue to wear a mask while traveling by plane, bus or train, and the guidance doesn’t apply in certain places like hospitals, nursing homes and prisons, the U.S. Centers for Disease Control and Prevention said Thursday.

The agency said it was making the revisions based on the latest science indicating that being fully vaccinated cuts the risk of getting infected and spreading the virus to others, in addition to preventing severe disease and death.