Toggle light / dark theme

Now, this is intriguing — pathways are a critical part of our system that monitors and manages how our bodies respond and interact to changes in our bodies. This recent SRC report focuses on the researchers efforts in monitoring pathways and how defects in pathways contribute to the biology and pathophysiology of cancer.


Bethesda, MD — This SRC focuses on new developments in the biology of lipid signaling with an emphasis on cancer, neuronal and cardiovascular diseases. The emphasis will be on molecular, cellular, structure/function and enzymatic mechanisms of physiological signaling pathways and how defects in these pathways contribute to the biology and pathophysiology of cancer, neurodegeneration and cardiovascular disease. The focus will be on how diacylglycerol, phosphatidic acid, lysophospholipids, sphingolipids and phosphoinositide lipids modulate specific pathways and processes in the contexts of physiological growth-regulatory signals, intracellular and extracellular vesicular trafficking, regulation of cell polarization, migration, motility and invasion, autophagy and epithelial extrusion, and as nuclear regulators of mRNA processing and gene expression. These sessions will include discussions on how signaling becomes dysfunctional in diseases. There will be presentations on new translational approaches and therapeutic targets. There will be significant representation from the pharmaceutical and biotechnology industry in order to facilitate networking between industry and academia. The topic areas have been chosen to maximize discussion of provocative and important developments.

We particularly wish to encourage the participation of new and junior researchers in the field and are securing additional support to provide PhD/postdoctoral fellow travel awards. Organizers have kept multiple short session speaking slots open. These will be selected from novel advances during 2015–2016 and from submitted abstracts. There will be multiple opportunities for new investigators and postdoctoral fellows to present and discuss their work including at poster sessions, short talks and short 5–10 minute oral ‘research snapshots’ to highlight their submitted abstracts. There will be multiple poster sessions during the conference. Time will also be allocated to at least two “meet the expert sessions” wherein established research leaders will dedicate time to interact with trainees and new investigators, specifically to give advice concerning the science and possible prospects for postdoctoral training, research funding, publishing or employment tracks.

The 2016 meeting brings together a wide range of leading investigators from across the globe. The scope of their subjects is vast, encompassing studies at the level of single proteins as well as the pathophysiology of complex disease. The program will highlight inter-disciplinary approaches and how major advances in biophysical, proteomic, genomic, imaging, modeling and therapeutic approaches are driving the field. The discussion forums and recreational activities will provide all participants extensive opportunities to exchange new ideas and forge new collaborations in a supportive interdisciplinary environment for participants at all stages of their research profession.

Read more

Unbelievable


A patient playing guitar looks odd in a surgery but actually helps doctors detect his brain signals.

A 57-year-old guitar musician received a brain operation in Shenzhen on Jan 25 as he played his guitar through the whole session.

The patient suffered a rare neurological disease called musician’s dystonia.

Read more

Finally. Bionic eye technology that could give sight back to millions of individuals worldwide is set to start trials.

Adding to the recent buzz surrounding the development of bionic eye systems is news of scientists from Australia who are set to begin trials on The Phoenix99 bionic eye—a fully implantable system that marks a significant breakthrough in neural stimulation technology.

The device, developed by engineers at the University of New South Wales (UNSW), has already been demonstrated successfully in pre-clinical work led by a team of elite surgical experts from Sydney, and it is expected to give patients better vision than any of the current restoration technologies.

Read more

Definitely, we’re already seeing the research releases on microbots.


A famed futurist who foresees a day when and human and artificial intelligence merge and nanobots battle disease spoke to CBC’s Duncan McCue about what lies ahead.

Read more

A lot of folks who know me well; knows that I donate my time and expertise to help with the various cancer foundations such as the National Esophageal Cancer Foundation. Esophageal Cancer is one form of cancer not often caught in time due to its symptoms. However, researchers have developed a 3D Stent that is simply amazing and is bringing a lot of hope for so many. Technology and medicine together is an amazing team.

I cannot wait to share this with the foundation’s president; she lost her husband only 2 years ago to this deadly cancer, I lost a cousin, and 2 years ago doctor’s removed a lesion from my esophagus. I cannot express enough to folks (especially younger folks; this is truly a silent killer and it hits all ages (20s, 30s, 40s, and 50s). And, once you ever have a lesion or cancer; you must be diligent in your follow ups no matter what.


fauPretty much everyone I know, myself included, has lost someone to cancer, many of them far too young. Finding a cure for cancer is the lofty, ultimate goal for medical researchers, and people like to fantasize about the day when the headline suddenly appears in the paper: “Cure for Cancer Found!” No more deaths from the disease, no more painful, drawn-out treatments – just a shot or a pill that can eliminate cancer as easily as clearing up an ear infection.

In reality, will it happen like that? It probably won’t be that easy – cancer is a complicated beast, and there are so many different forms with their own unique complexities that a universal, one-off cure is a difficult proposition. However, a lot of promising recent developments do point to a near future in which treatment is much more effective and deaths much more rare. And a lot of those developments involve 3D printing.

ds00500_im03992_c7_esophagealstentthu_jpgNo cancer is pleasant, but some are much easier to treat than others. Certain types of cancers tend to come with a dire prognosis, and esophageal cancer is one of those. It’s the eighth most common type of cancer in the world, but it’s often detected late, and it’s very difficult to operate on; in fact, 50 to 60 percent of patients with the disease are ineligible for surgery. Those patients are often treated with the surgical implantation of a stent, which is made from a metal mesh and can cause numerous complications such as bleeding, perforation or tumor ingrowth.

Read more

Virtual Healthcare & IMSHealth is a major player in this service offering. Healthcare and clinic in your own home.


The University of Southern California Center for Body Computing has teamed with 8 partners to launch a Virtual Care Clinic. The idea with VCC is to create an integrated approach to the use of mobile apps, “virtual” doctors, artificial intelligence, data collection and analysis, as well as diagnostics and wearable sensors to create truly on-demand healthcare.

The partners involved in this effort are peer-reviewed clinical trial database startup Doctor Evidence, drug data resource IMS Health ($IMS), consumer design firm Karten Design, HIPAA-compliant cloud platform Medable, video creator Planet Grande, sensor-enabled pill startup Proteus Digital Health and vision player VSP Global.

VSP’s next-gen sensor-embedded eyewear prototype, dubbed Project Genesis, will be refined and tested at the VCC in consultation with USC CBC, which is the digital health innovation accelerator at Keck School of Medicine. The VCC will also involve USC’s Institute of Creative Technologies (ICT).

Read more

What drove David Sengeh to create a more comfortable prosthetic limb? He grew up in Sierra Leone, and too many of the people he loves are missing limbs after the brutal civil war there. When he noticed that people who had prosthetics weren’t actually wearing them, he set out to discover why — and to solve the problem with his team from the MIT Media Lab.

TEDTalks is a daily video podcast of the best talks and performances from the TED Conference, where the world’s leading thinkers and doers give the talk of their lives in 18 minutes (or less). Look for talks on Technology, Entertainment and Design — plus science, business, global issues, the arts and much more.

Find closed captions and translated subtitles in many languages at http://www.ted.com/translate

Follow TED news on Twitter: http://www.twitter.com/tednews
Like TED on Facebook: https://www.facebook.com/TED

Read more

Research is edging us closer to a cure for type 1 diabetes, with encapsulated insulin producing cells that could last for years — ending daily injections

Over 400,000 in the UK alone live with type 1 diabetes, and daily injections are far from a ‘cure’ for the condition. Although these have saved millions worldwide, they’re inaccurate in comparison to the body’s own finely tuned insulin producing cells. This leads to progressive damage and complications.

The wonders of cell therapy

In type 1, and some later stage type 2 diabetics, the body lacks capable insulin producing beta cells. These carefully release packets of insulin in response to fluctuating blood sugar levels, and keep your blood sugar in check. Harvesting beta cells from deceased donors has been attempted in the past, but they’re quickly attacked by the immune system and patients must take unpleasant immunosuppressant drugs alongside the treatment.

Read more