Toggle light / dark theme

Classifying aging as a disease, the debate is hotting up as ICD11 at WHO draws near.


What is considered to be normal and what is considered to be diseased is strongly influenced by historical context (Moody, ). Matters once considered to be diseases are no longer classified as such. For example, when black slaves ran away from plantations they were labeled to suffer from drapetomania and medical treatment was used to try to “cure” them (Reznek, ). Similarly, masturbation was seen as a disease and treated with treatments such as cutting away the clitoris or cauterizing it (Reznek, ). Finally, homosexuality was considered a disease as recently as 1974 (Reznek, ). In addition to the social and cultural influence on disease definition, new scientific and medical discoveries lead to the revision of what is a disease and what is not (Butler, ). For example, fever was once seen as a disease in its own right but the realization that different underlying causes would lead to the appearance of fever changed its status from disease to symptom (Reznek, ). Conversely, several currently recognized diseases, such as osteoporosis, isolated systolic hypertension, and senile Alzheimer’s disease, were in the past ascribed to normal aging (Izaks and Westendorp, ; Gems, ). Osteoporosis was only officially recognized as a disease in 1994 by the World Health Organization (WHO, ).

Disease is a complex phenomenon and a current definition must consider both a biological and social explanation. The medical definition of disease is any abnormality of bodily structure or function, other than those arising directly from physical injury; the latter, however, may open the way for disease (Marcovitch, ). The disorder has a specific cause and recognizable signs and symptoms, and can affect humans, other animals, and plants (Martin, ). The social aspect of disease is significant when trying to divide a line between a healthy and a pathological state. This is a highly context and value driven process and, considering the WHO definition of health as a “state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity,” it is not as simple as classifying disease as the opposite of health (WHO, ). “Someone starving to death is not taken to have a disease, but is still not considered healthy” (Reznek, ).

Read more

How society can profit from treating age-related diseases.


We’re now living longer than ever – only to suffer from diseases of old age. New therapies promise a new lease of life for the elderly – and big profits for investors, says Matthew Partridge.

Over the past century, average life expectancy in most countries has grown substantially. Vastly lower infant mortality, improved living standards, better public sanitation, and the discovery of cures or vaccines for many once-deadly diseases, have seen average life expectancy in most developed nations rise to around 80, compared with 50 in 1900. Developing nations have benefited too. Life expectancy in China, for example, was just 43 in 1960 – it’s 75 today. Indeed, according to the World Health Organisation, no individual nation outside Africa now has a life expectancy of below 60, and even Africa has seen huge gains since 2000, helped by improved anti-malarial measures and wider availability of HIV/Aids treatments.

However, the pace of progress is slowing. From 1900, it took less than 30 years for life expectancy in the US to rise from 50 to 60 years. It took another 40 years to rise to 70, and now, nearly 50 years later, it is still hovering at just below 80. The problem is that while we’ve largely beaten the diseases that used to kill people in childhood, early adulthood and even middle age, we’re having much less success in prolonging the life of the elderly. Here’s a stark illustration: in Britain in 1840, if you made it to 65, you could expect, on average, to die at age 76. In 2011, a 65-year-old could expect to die aged 83. In other words, today you have a far better chance of living to 65 than you did 170-odd years ago. But if you do, your remaining life expectancy won’t be much greater than that of your 19th-century peers.

Read more

In Brief.

  • New 3D printed bones are ‘hyperelastic,’ making them more malleable during procedures.
  • 3D printers in hospitals could provide the hyperelastic bone ink, so surgeons could make implants in 24 hours.

Remarkable.

This best describes the new bone-mending technology developed at Northwestern University in Evanston, Illinois by Ramille Shah and her colleagues. They used ink made from a natural bone mineral called hydroxyapatite, mixed with PLGA, a mineral-binding polymer that makes the implants elastic.

Read more

Customised immunotherapy for treating cancer is part of the new generation of biotech solutions to diseases.


UC San Francisco scientists have engineered human immune cells that can precisely locate diseased cells anywhere in the body and execute a wide range of customizable responses, including the delivery of drugs or other therapeutic payloads directly to tumors or other unhealthy tissues. In experiments with mice, these immune cells, called synNotch T cells, efficiently homed in on tumors and released a specialized antibody therapy, eradicating the cancer without attacking normal cells.

As reported in the Sept. 29, 2016, online edition of Cell, in addition to delivering therapeutic agents, synNotch can be programmed to kill cancer cells in a variety of other ways. But synNotch cells can also carry out instructions that suppress the immune response, offering the possibility that these cells could be used to treat autoimmune diseases such as type 1 diabetes or to locally suppress immune system rejection of transplanted organs.

“SynNotch is a universal molecular sensor that allows us to program as if they were microscopic robots,” said Wendell Lim, PhD, chair and professor of cellular and molecular pharmacology at UCSF, Howard Hughes Medical Institute investigator, and member of the UCSF Helen Diller Family Comprehensive Cancer Center. “They can be customized with different features and functions, and when they detect the appropriate signals in a diseased tissue, they can be triggered to deploy diverse therapeutic weapons.”

Read more

UK researchers from five major universities close in on a cure for HIV by reprogramming immune cells to recognize the virus and destroy it.


A British man could become the first person in the world to be cured of HIV using a new therapy designed by a team of scientists from five UK universities.

The 44-year-old is one of 50 people currently trialling a treatment which targets the disease even in its dormant state.

Scientists told The Sunday Times that presently the virus is completely undetectable in the man’s blood, although that could be a result of regular drugs. However if the dormant cells are also cleared out it could represent the first complete cure. Trial results are expected to be published in 2018.

Read more

I never get tired in circuitry thread and any new findings.


Tufts University engineers say that revolutionary health diagnostics may be hanging on a thread—one of many threads they have created that integrate nano-scale sensors, electronics and microfluidics into threads ranging from simple cotton to sophisticated synthetics. “We think thread-based devices could potentially be used as smart sutures for surgical implants, smart bandages to monitor wound healing, or integrated with textile or fabric as personalized health monitors and point-of-care diagnostics,” says Sameer Sonkusale, Ph.D., director of the interdisciplinary Nano Lab in the Department of Electrical and Computer Engineering at Tufts School of Engineering, Medford/Somerville, Mass.

Researchers dipped a variety of conductive threads in physical and chemical sensing compounds and connected them to wireless electronic circuitry. The threads, sutured into tissues of rats, collected data on tissue health (pressure, stress, strain and temperature), pH and glucose levels. The data helps determine how wounds are healing, whether infection is emerging or whether the body’s chemistry is out of balance. Thread’s natural wicking properties draw fluids to the sensing compounds. Resulting data is transmitted wirelessly to a cell phone and computer.

To date, substrates for implantable devices have been two-dimensional, expensive and difficult to process, making them suitable for flat tissue, such as skin, but not for organs. “By contrast, thread is abundant, inexpensive, thin and flexible, and can be easily manipulated into complex shapes,” says Pooria Mostafalu, Ph.D., postdoctoral research fellow with the Harvard-MIT Division of Health Sciences and Technology and former Tufts doctoral student.

Read more

More progress in repairing damage to the cornea which could have implications for aging research as well as for injury.


Media Contacts: Suzanne Day Media Relations, Mass. Eye and Ear 617−573−3897 [email protected]

New findings may pave the way for the development of pharmaceutical therapies to reverse corneal scarring

Boston, Mass. — In cases of severe ocular trauma involving the cornea, wound healing occurs following intervention, but at the cost of opaque scar tissue formation and damaged vision. Recent research has shown that mesenchymal stem cells (MSCs) — which can differentiate into a variety of cells, including bone, cartilage, muscle and fat cells — are capable of returning clarity to scarred corneas; however, the mechanisms by which this happens remained a mystery — until now. In a study published online today in Stem Cell Reports, researchers from Schepens Eye Research Institute of Massachusetts Eye and Ear have identified hepatocyte growth factor (HGF), secreted by MSCs, as the key factor responsible for promoting wound healing and reducing inflammation in preclinical models of corneal injury. Their findings suggest that HGF-based treatments may be effective in restoring vision in patients with severely scarred corneas.

Read more